×

Second-order edge-penalization in the Ambrosio-Tortorelli functional. (English) Zbl 1332.49016

Summary: We propose and study two variants of the Ambrosio-Tortorelli functional where the first-order penalization of the edge variable \(v\) is replaced by a second-order term depending on the Hessian or on the Laplacian of \(v\), respectively. We show that both the variants above provide an elliptic approximation of the Mumford-Shah functional in the sense of \(\Gamma\)-convergence. In particular, the variant with the Laplacian penalization can be implemented numerically without any difficulties compared to the standard Ambrosio-Tortorelli functional. The computational results indicate several additional advantages. First of all, the diffuse approximation of the edge contours appears smoother and clearer for the minimizers of the second-order functional. Moreover, the convergence of alternating minimization algorithms seems improved for the new functional. We also illustrate the findings with several computational results.

MSC:

49J45 Methods involving semicontinuity and convergence; relaxation
49M30 Other numerical methods in calculus of variations (MSC2010)
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
68U10 Computing methodologies for image processing
74G65 Energy minimization in equilibrium problems in solid mechanics

References:

[1] R. A. Adams, {\it Sobolev Spaces}, Academic Press, New York, 1975. · Zbl 0314.46030
[2] L. Ambrosio, N. Fusco, and D. Pallara, {\it Functions of Bounded Variation and Free Discontinuity Problems}, Oxford Math. Monogr., Clarendon Press, New York, 2000. · Zbl 0957.49001
[3] L. Ambrosio and V. M. Tortorelli, {\it Approximation of functionals depending on jumps by elliptic functionals via \(\G{-}\) convergence}, Comm. Pure Appl. Math., 43 (1990), pp. 999-1036. · Zbl 0722.49020
[4] L. Ambrosio and V. M. Tortorelli, {\it On the approximation of free-discontinuity problems}, Boll. Unione. Mat. Ital., 6-B (1992), pp. 105-123. · Zbl 0776.49029
[5] L. Bar, N. Sochen, and N. Kiryati, {\it Semi-blind image restoration via Mumford-Shah regularization}, IEEE Trans. Image Process., 15 (2006), pp. 483-493.
[6] M. Benning, C. Brune, M. Burger, and J. Müller, {\it Higher-order TV methods – enhancement via Bregman iteration}, J. Sci. Comput., 54 (2013), pp. 269-310. · Zbl 1308.94012
[7] A. Bertozzi, S. Esedoḡlu, and A. Gillette, {\it Analysis of a two-scale Cahn-Hilliard model for binary image inpainting}, Multiscale Model. Simul., 6 (2007), pp. 913-936. · Zbl 1149.35309
[8] G. Bouchitté, I. Fonseca, G. Leoni, and L. Mascarenhas, {\it A global method for relaxation in \(W^{1,p}\) and in \(SBV_p\)}, Arch. Ration. Mech. Anal., 165 (2002), pp. 187-242. · Zbl 1028.49009
[9] A. Braides, {\it \(\G\hbox{-}\) convergence for Beginners}, Oxford University Press, Oxford, 2002. · Zbl 1198.49001
[10] A. Braides, {\it Approximation of Free-Discontinuity Problems}, Lecture Notes in Math. 1694, Springer Verlag, Berlin, 1998. · Zbl 0909.49001
[11] M. Burger, T. Esposito, and C. I. Zeppieri, Supplementary material to Second-order edge-penalization in the Ambrosio-Tortorelli functional, available online from http://cvgmt.sns.it/media/doc/paper/2673/BEZ2015suppl.pdf. · Zbl 1332.49016
[12] T. F. Chan and L. A. Vese, {\it Active contours without edges}, IEEE Trans. Image Process., 10 (2001), pp. 266-277. · Zbl 1039.68779
[13] M. Chermisi, G. Dal Maso, I. Fonseca, and G. Leoni, {\it Singular perturbation models in phase transitions for second-order materials}, Indiana Univ. Math, J., 60 (2011), pp. 591-639. · Zbl 1255.49022
[14] L. Cheng, J. Yang, X. Fan, and A. Zhum, {\it A Generalized level set formulation of the Mumford-Shah functional for brain MR image segmentation}, in G.E. Christensen and M. Sonka, eds., Information Processing in Medical Imaging, Springer, Berlin, 2005, pp. 418-430.
[15] M. Cicalese, E. N. Spadaro, and C. I. Zeppieri, {\it Asymptotic analysis of a second-order singular perturbation model for phase transitions}, Calc. Var. Partial Differential Equations, 41 (2011), pp. 127-150. · Zbl 1216.49013
[16] G. Cortesani, {\it Strong approximation of \(GSBV\) functions by piecewise smooth functions}, Ann. Univ. Ferrara Sez. VII Sci. Mat., 43 (1997), pp. 27-49. · Zbl 0916.49002
[17] E. De Giorgi and L. Ambrosio, {\it New functionals in the calculus of variations}. (Italian), Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 82 (1988), pp. 199-210. · Zbl 0715.49014
[18] L. C. Evans, {\it Partial Differential Equations}, Grad. Stud. Math. 19, AMS, Providence, RI, 1998. · Zbl 0902.35002
[19] I. Fonseca and C. Mantegazza, {\it Second order singular perturbation models for phase transitions}, SIAM J. Math. Anal., 31 (2000), pp. 1121-1143. · Zbl 0958.49007
[20] I. Fonseca and S. Müller, {\it Quasi-convex integrands and lower semicontinuity in \(L^1\)}, SIAM J. Math. Anal., 23 (1992), pp. 1081-1098. · Zbl 0764.49012
[21] M. Gobbino, {\it Finite difference approximation of the Mumford-Shah functional}, Comm. Pure Appl. Math., 51 (1998), pp. 197-228. · Zbl 0888.49013
[22] J. Grah, {\it Methods for Automatic Mitosis Detection and Tracking in Phase Contrast Images}, MSc thesis, University of Münster, Münster, 2014.
[23] P. Grisvard, {\it Elliptic Problems in Nonsmooth Domains}, Monogr. Stud. Math. 24, Pitman, Boston, MA, 1985. · Zbl 0695.35060
[24] P. Grisvard, {\it Singularities in Boundary Value Problems}, Res. Notes Appl. Math. 22, Masson, Paris, 1992. · Zbl 0766.35001
[25] D. Hilhorst, L. A. Peletier, and R. Schätzle, {\it \(Γ\)-limit for the extended Fischer-Kolmogorov equation}, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), pp. 141-162. · Zbl 1001.35010
[26] S. Henn and K. Witsch, {\it Image registration based on multiscale energy information}, Multiscale Model. Simul., 4 (2005), pp. 584-609. · Zbl 1093.94004
[27] M. Hintermüller and W. Ring, {\it An inexact Newton-CG-type active contour approach for the minimization of the Mumford-Shah functional}, J. Math. Imaging Vision, 20 (2004), pp. 19-42. · Zbl 1366.65066
[28] B. Kawohl, {\it From Mumford-Shah to Perona-Malik in image processing}, Math. Methods Appl. Sci., 27 (2004), pp. 1803-1814. · Zbl 1060.35054
[29] L. Modica, {\it The gradient theory of phase transitions and the minimal interface criterion}, Arch. Ration. Mech. Anal., 98 (1987), pp. 123-142. · Zbl 0616.76004
[30] L. Modica and S. Mortola, {\it Un esempio di \(Γ\)-convergenza}, Bol. Unione. Mat. Ital., 14-B (1977), pp. 285-299. · Zbl 0356.49008
[31] J. M. Morel and S. Solimini, {\it Variational Methods in Image Processing}, Birkhäuser, Basel, 1995. · Zbl 0827.68111
[32] D. Mumford and J. Shah, {\it Optimal approximations by piecewise smooth functions and associated variational problems}, Comm. Pure Appl. Math., 42 (1989), pp. 577-685. · Zbl 0691.49036
[33] A. Sawatzky, D. Tenbrinck, X. Jiang, and M. Burger, {\it A variational framework for region-based segmentation incorporating physical noise models}, J. Math. Imaging Vision, 47 (2013), pp. 179-209. · Zbl 1291.68402
[34] A. Tsai, A. J. Yezzi, and A. S. Willsky, {\it Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification}, IEEE Trans. Image Process., 10 (2001), pp. 1169-1186. · Zbl 1062.68595
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.