×

Wasserstein steepest descent flows of discrepancies with Riesz kernels. (English) Zbl 1540.49049

In this paper, the interest in Wasserstein flows arises from the approximation of probability measures by empirical measures when halftoning images, i.e., the gray values of an image are considered as values of a probability density function of a measure.
The Wasserstein space \({\mathcal P}_2({\mathbb R}^d)\) is defined as metric space of all Borel measures with finite second moments equipped with the Wasserstein distance. First the authors introduce Wasserstein steepest descent flows which are locally absolutely continuous curves in \({\mathcal P}_2({\mathbb R}^d)\) whose tangent vectors point into a steepest descent direction of a given functional. This allows the use of Euler forward schemes instead of Jordan-Kinderlehrer-Otto schemes. For a \(\lambda\)-convex functional, the Wasserstein steepest descent flow coincides with the Wasserstein gradient flow.
Further, the authors study Wasserstein flows of the maximum mean discrepancy with respect to certain Riesz kernels. They present analytic expressions for Wasserstein steepest descent flows of the interaction energy starting at Dirac measures. Finally, for halftoning images they provide several numerical simulations of Wasserstein steepest descent flows of discrepancies.

MSC:

49Q20 Variational problems in a geometric measure-theoretic setting
65D18 Numerical aspects of computer graphics, image analysis, and computational geometry
31B15 Potentials and capacities, extremal length and related notions in higher dimensions
35A15 Variational methods applied to PDEs
46E27 Spaces of measures
49N90 Applications of optimal control and differential games
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
49Q22 Optimal transportation

References:

[1] Altekrüger, F.; Hertrich, J.; Steidl, G., Neural Wasserstein gradient flows for maximum mean discrepancies with Riesz kernels, 664-690
[2] Ambrosio, L.; Gigli, N.; Savare, G., Gradient Flows. Lectures in Mathematics ETH Zürich (2005), Birkhäuser: Birkhäuser Basel · Zbl 1090.35002
[3] Arbel, M.; Korba, A.; Salim, A.; Gretton, A., Maximum mean discrepancy gradient flow, 1-11
[4] Atkinson, K.; Han, W., Spherical Harmonics and Approximations on the Unit Sphere: An Introduction. Lecture Notes in Mathematics (2012), Springer: Springer Heidelberg · Zbl 1254.41015
[5] Balagué, D.; Carrillo, J. A.; Laurent, T.; Raoul, G., Dimensionality of local minimizers of the interaction energy. Arch. Ration. Mech. Anal., 1055-1088 (2013) · Zbl 1311.49053
[6] Bateman, H., Higher Transcendental Functions, vol. 1 (1953), McGraw-Hill Book Company · Zbl 0051.30303
[7] Baxter, B. J.; Hubbert, S., Radial basis functions for the sphere, 33-47 · Zbl 1035.41012
[8] Bonaschi, G., Gradient flows driven by a non-smooth repulsive interaction potential (2011), University of Pavia, Master’s thesis
[9] Bonaschi, G. A.; Carrillo, J. A.; Francesco, M. D.; Peletier, M. A., Equivalence of gradient flows and entropy solutions for singular nonlocal interaction equations in 1d. ESAIM Control Optim. Calc. Var., 414-441 (2015) · Zbl 1316.35077
[10] Borodachov, S. V.; Hardin, D. P.; Saff, E. B., Discrete Energy on Rectifiable Sets. Springer Monographs in Mathematics (2019), Springer: Springer New York · Zbl 1437.41002
[11] Brenier, Y., Décomposition polaire et réarrangement monotone des champs de vecteurs. C. R. Acad. Sci., Sér. 1 Math., 19, 805-808 (1987) · Zbl 0652.26017
[12] Carrillo, J. A.; Huang, Y., Explicit equilibrium solutions for the aggregation equation with power-law potentials. Kinet. Relat. Models, 1, 171-192 (2017) · Zbl 1354.45001
[13] Carrillo, J. A.; Di Francesco, M.; Esposito, A.; Fagioli, S.; Schmidtchen, M., Measure solutions to a system of continuity equations driven by Newtonian nonlocal interactions. Discrete Contin. Dyn. Syst., 2, 1191-1231 (2020) · Zbl 1441.35103
[14] Carrilo, J. A.; Mateu, J.; Mora, M. G.; Rondi, L.; Scardia, L.; Verdera, J., The equilibrium measure for an anisotropic nonlocal energy. Calc. Var. Partial Differ. Equ., 109 (2021) · Zbl 1469.31005
[15] Chafaï, D.; Saff, E. B.; Womersley, R. S., Threshold condensation to singular support for a Riesz equilibrium problem (2022)
[16] Chafaï, D.; Saff, E. B.; Womersley, R. S., On the solution of a Riesz equilibrium problem and integral identities for special functions. J. Math. Anal. Appl. (2022) · Zbl 1495.31013
[17] (Demyanov, V.; Rubinov, A., Quasidifferentiability and Related Topics, Nonconvex Optimization and Its Applications (2000), Springer: Springer New York, NY) · Zbl 0949.00047
[18] Ehler, M.; Gräf, M.; Neumayer, S.; Steidl, G., Curve based approximation of measures on manifolds by discrepancy minimization. Found. Comput. Math., 6, 1595-1642 (2021) · Zbl 1491.65048
[19] Erdélyi, A.; Magnus, A.; Oberhettinger, W.; Tricomi, F., Higher Transcendental Functions, vol. I (1953), McGraw-Hill Book Company · Zbl 0051.30303
[20] Fornasier, M.; Haskovec, J.; Steidl, G., Consistency of variational continuous-domain quantization via kinetic theory. Appl. Anal., 6, 1283-1298 (2013) · Zbl 1273.82030
[21] Garbuno-Inigo, A.; Hoffmann, F.; Li, W.; Stuart, A. M., Interacting Langevin diffusions: gradient structure and ensemble Kalman sampler (2019) · Zbl 1447.65119
[22] Gigli, N., On the geometry of the space of probability measures in \(\mathbb{R}^n\) endowed with the quadratic optimal transport distance (2004), Scuola Normale Superiore di Pisa, PhD thesis
[23] Giorgi, E. D., New problems on minimizing movements, 81-98 · Zbl 0851.35052
[24] Gräf, M.; Potts, M.; Steidl, G., Quadrature errors, discrepancies and their relations to halftoning on the torus and the sphere. SIAM J. Sci. Comput., 5, 2760-2791 (2012) · Zbl 1261.65066
[25] Gutleb, T. S.; Carrillo, J. A.; Olver, S., Computation of power law equilibrium measures on balls of arbitrary dimension (2021)
[26] Hagemann, P.; Hertrich, J.; Steidl, G., Generalized Normalizing Flows via Markov Chains (2023), Cambridge University Press
[27] Hertrich, J.; Gräf, M.; Beinert, R.; Steidl, G., Wasserstein steepest descent flows of discrepancies with Riesz kernels (2022)
[28] Hertrich, J.; Beinert, R.; Gräf, M.; Steidl, G., Wasserstein gradient flows of the discrepancy with distance kernel on the line, 431-443
[29] Hertrich, J.; Wald, C.; Altekrüger, F.; Hagemann, P., Generative sliced MMD flows with Riesz kernels (2023)
[30] Jordan, R.; Kinderlehrer, D.; Otto, F., The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal., 1, 1-17 (1998) · Zbl 0915.35120
[31] Koepf, W., Hypergeometric Summation, vol. 5 (1998), Vieweg: Vieweg Braunschweig/Wiesbaden · Zbl 0909.33001
[32] Landkof, N., Foundations of Modern Potential Theory. Grundlehren der mathematischen Wissenschaften (1972), Springer: Springer Berlin · Zbl 0253.31001
[33] Laumont, R.; Bortoli, V.; Almansa, A.; Delon, J.; Durmus, A.; Pereyra, M., Bayesian imaging using plug & play priors: when Langevin meets Tweedie. SIAM J. Imaging Sci., 2, 701-737 (2022) · Zbl 1515.65144
[34] Liu, Q., Stein variational gradient descent as gradient flow, 1-9
[35] Mora, M. G.; Rondi, L.; Scardia, L., The equilibrium measure for a nonlocal dislocation energy. Commun. Pure Appl. Math., 136-158 (2019) · Zbl 1412.49004
[36] Neumayer, S.; Steidl, G., From optimal transport to discrepancy, 1-36
[37] Nüsken, N.; Renger, D. M., Stein variational gradient descent: many-particle and long-time asymptotics (2021)
[38] Otto, F., The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ., 101-174 (2001) · Zbl 0984.35089
[39] Otto, F.; Westdickenberg, M., Eulerian calculus for the contraction in the Wasserstein distance. SIAM J. Math. Anal., 4, 1227-1255 (2005) · Zbl 1094.58016
[40] Pavliotis, G. A., Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations. Texts in Applied Mathematics (2014), Springer: Springer New York · Zbl 1318.60003
[41] Piccoli, B., Measure differential equations. Arch. Ration. Mech. Anal., 1289-1317 (2019) · Zbl 1417.49059
[42] Reich, S.; Cotter, C. J., Ensemble filter techniques for intermittent data assimilation. Large scale inverse problems. Comput. Methods Appl. Earth Sci., 91-134 (2013) · Zbl 1291.65032
[43] Rockafellar, R. T.; Wets, R. J.-B., Grundlehren der mathematischen Wissenschaften (2009), Springer: Springer Berlin, Variational Analysis
[44] Saff, E.; Totik, V., Logarithmic Potentials with External Fields. Grundlehren der mathematischen Wissenschaften (1997), Springer: Springer Berlin · Zbl 0881.31001
[45] Santambrogio, F., Optimal Transport for Applied Mathematicians. Progress in Nonlinear Differential Equations and Their Applications (2015), Birkhäuser: Birkhäuser Basel · Zbl 1401.49002
[46] Schmaltz, C.; Gwosdek, P.; Bruhn, A.; Weickert, J., Electrostatic halftoning. Comput. Graph. Forum, 8, 2313-2327 (2010)
[47] Sejdinovic, D.; Sriperumbudur, B.; Gretton, A.; Fukumizu, K., Equivalence of distance-based and RKHS-based statistics in hypothesis testing. Ann. Stat., 5, 2263-2291 (2013) · Zbl 1281.62117
[48] Slater, L. J., Generalized Hypergeometric Functions (1966), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0135.28101
[49] Székely, G., E-statistics: the energy of statistical samples (2002), Bowling Green University, Technical Report
[50] Teuber, T.; Steidl, G.; Gwosdek, P.; Schmaltz, C.; Weickert, J., Dithering by differences of convex functions. SIAM J. Imaging Sci., 1, 79-108 (2011) · Zbl 1214.49017
[51] Trillos, N. G.; Sanz-Alonso, D., The Bayesian update: variational formulations and gradient flows. Bayesian Anal., 1, 29-56 (2020) · Zbl 1437.62113
[52] Welling, M.; Teh, Y.-W., Bayesian learning via stochastic gradient Langevin dynamics, 681-688
[53] Wendland, H., Scattered Data Approximation (2005), Cambridge University Press · Zbl 1075.65021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.