×

Nonlinear connections and nearly autoparallel maps in general relativity. (English) Zbl 1026.83049

Summary: We apply the method of moving anholonomic frames with associated nonlinear connections to the (pseudo) Riemannian space geometry and examine the conditions when locally anisotropic structures (Finsler like and more general ones) could be modeled in the general relativity theory and/or Einstein-Cartan-Weyl extensions [S. L. Vacaru and H. Dehnen, Gen. Relativ. Gravitation 35, 209-250 (2003; Zbl 1016.83034)]. New classes of solutions of the Einstein equations with generic local anisotropy are constructed. We formulate the theory of nearly autoparallel (na) maps generalizing the conformal transforms and formulate the Einstein gravity theory on na-backgrounds provided with a set of na-map invariant conditions and local conservation laws. There are illustrated some examples when vacuum Einstein fields are generated by Finsler like metrics and chains of na-maps.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C10 Equations of motion in general relativity and gravitational theory
53B40 Local differential geometry of Finsler spaces and generalizations (areal metrics)

Citations:

Zbl 1016.83034

References:

[1] Vacaru, S. and Dehnen, H. (2003). Gen. Relativ. Gravit. 35, 209. · Zbl 1016.83034 · doi:10.1023/A:1022388909622
[2] Vacaru, S. (2001). Locally Anisotropic Black Holes in Einstein Gravity, gr–qc/0001020
[4] Vacaru, S. · Zbl 1062.82047 · doi:10.1006/aphy.2000.6121
[5] Vacaru, S., Singleton, D., Boton, V., and Dotenco, · Zbl 0972.83021 · doi:10.1016/S0370-2693(01)01094-2
[6] Vacaru, S. and Popa, F. C. (2001 · Zbl 0987.83038 · doi:10.1088/0264-9381/18/22/314
[7] Vacaru, S. and Tintareanu-Mircea, · Zbl 0989.83040 · doi:10.1016/S0550-3213(02)00036-6
[8] Vacaru, S. and Singleton, D. (2002). J. Math. Phys. 43, 2486 · Zbl 1059.83034 · doi:10.1063/1.1467967
[9] Vacaru, S. and Singleton, D. (2002). Class. Quant. Grav. 19, 2793 · Zbl 1007.83032 · doi:10.1088/0264-9381/19/11/304
[10] Vacaru, S. and Singleton, D. (2002). Class. Quant. Grav. 19, 3583 · Zbl 1005.83029 · doi:10.1088/0264-9381/19/14/302
[11] Vacaru, S., Stavrinos, P., and Gaburov, E. (2001). Anholonomic Triads and New Classes of (2+1)-Dimensional Black Hole solutions, preprint gr-qc/0106068
[12] Vacaru, S., Stavrinos, P., and Denis Gontsa. (2001). Anholonomic Frames and Thermodynamic Geometry of 3D Black Holes, preprint gr-qc/0106069.
[13] Vacaru, S. (1996). J. Math. Phys. 37, 508 · Zbl 0870.53054 · doi:10.1063/1.531406
[14] Vacaru, S. · Zbl 0956.83049 · doi:10.1006/aphy.1996.5661
[15] Vacaru, · Zbl 0934.81032 · doi:10.1016/S0550-3213(97)00089-8
[16] Vacaru, S. (1998). J. High Energy Phys. 9809, 011. · Zbl 0951.83031 · doi:10.1088/1126-6708/1998/09/011
[17] Finsler, P. (1918). über Kurven und Flä chen in Allgemeinen Räumen, Dissertation (Göttingen); reprinted, Birkhäuser, Basel 1951.
[18] E. Cartan (1935). Les Espaces de Finsler, Hermann, Paris. · Zbl 0008.41805
[19] Rund, H. (1959). The Differential Geometry of Finsler Spaces, Springer–Verlag, Berlin · Zbl 0087.36604
[20] Asanov, G. S. (1985). Finsler Geometry, Relativity and Gauge Theories, Reidel, Boston · Zbl 0576.53001
[21] Matsumoto, M. (1986). Foundations of Finsler Geometry and Special Finsler Spaces, Shigaken, Kaisisha · Zbl 0594.53001
[22] Asanov, G. S. and Ponomarenko, S. F. (1988). Finsler Bundle on Space–Time. Associated Gauge Fields and Connections, ChişinĂu, ştiinţa, [in Russian] · Zbl 0708.53001
[23] Bejancu, A. (1990). Finsler Geometry and Applications, Ellis Horwood, Chichester, England. · Zbl 0702.53001
[24] Miron, R. and Anastasiei, M. (1987). Vector Bundles. Lagrange Spaces. Application in Relativity (Academiei, Romania) [in Romanian] · Zbl 0616.53002
[25] English translation, Balkan Press, Bucharest (1996)
[26] Miron, R. and Anastasiei, M. (1994). The Geometry of Lagrange Spaces: Theory and Applications, Kluwer Academic Boston. · Zbl 0831.53001
[27] Bogoslovsky, G. · doi:10.1007/BF02739183
[28] Bogoslovsky, G. Yu. (1992). Theory of Locally Anisotropic Space–Time, Moscow State University, Moscow [in Russian] · Zbl 1011.83500
[29] Goenner, H. F. and Bogoslovsky, G. Yu. (200
[30] Will, C. M. (1993). Theory and Experiment in Gravity Physics, Revised version, Cambridge University Press, Cambridge.
[31] Cartan, E. (1923). Ann. Ex. Norm. Sup. 325 [Russion translation in the collection of works: E. Cartan, Pronstranstva affinoy, proektivnoy i konformnoy sveaznosti, Kazani, Kazani University Press, 1962]
[32] Carta · JFM 56.0007.02
[33] Cartan, E. La methode du repere mobile, la theories des groupes continus et les espaces generalises (Hermann, Paris) (1935)
[34] Cartan, E. In Selectia de M. Cartan, Paris, Publisher unknown (1939). p. 113
[35] Cartan, E. Les sytemes differentiels exterieurs et leurs applications geometriques, Actualites, Paris 1945.
[36] Barthel, W. (1963). J. Angew. Math. 212, 120.
[37] Vacaru, S. and Ostaf, S. In Lagrange and Finsler Geometry, P. L. Antonelli, and R. Miron, (Eds.) (1996), Kluwer Academic, London, p. 241
[38] Vacaru, S., Ostaf, S., Goncharenko, Yu., and Doina, A. (1994). Buletinul Academiei de Stiinte a Republicii Moldova, Fizica si Tehnica [Izvestia Academii Nauk Respubliky Moldova, fizica i tehnika], 3, 42-53.
[39] Vacaru, S. (1996). Buletinul Academiei de Stiinte a Republicii Moldova, Fizica si Tehnica [Izvestia Academii Nauk Respubliky Moldova, fizica i tehnika], 1, 46-51
[40] Gottlieb, I. and Vacaru, S. In Lagrange and Finsler Geometry, Applications to Physics and Biology, P. L. Antonelli and Radu Miron (Eds.) (1996), Kluwer Academic, London, p. 209.
[41] Gottlieb I. Oproiu, V., and Zet, G. (1974). An. şti. Univ. ”Al. I. Cuza” Ias
[42] Vacaru, S. (1998). Interactions, Strings, and Isotopies in Higher Order Anisotropic Superspaces, Hadronic Press, Palm Harbor. · Zbl 0954.53049
[43] Moó · Zbl 0044.37301 · doi:10.1007/BF02392665
[44] Sinyukov, N. S. (1979). Geodesic Maps of Riemannian Spaces, Nauka, Moscow, [In Russian] · Zbl 0637.53020
[45] Ellis, G. and Hawking, S. (1973). The Large Scale Structure of Space–Time, Cambridge University Press, Cambridge. · Zbl 0265.53054
[46] Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation, Freeman, San Fransisco, California.
[47] Mielke, E. W. (1987). Geometrodynamics of Gauge Fields–On the Geometry of Yang–Mills and Gravitational Gauge Theories, Akademieverlag, Berlin. · Zbl 0647.53068
[48] Kern · Zbl 0297.53035 · doi:10.1007/BF01238702
[49] Vacaru, S. and Ostaf, S. (1993). Buletinul Academiei de Stiinte a Republici Moldova, Fizica si Tehnica [Izvestia Academii Nauk Respubliky Moldova, fizica i tehnika], 3, 4-17
[50] Vacaru, S. (1993). Buletinul Academiei de Stiinte a Republicii Moldova, Fizica si Tehnica [Izvestia Academii Nauk Respubliky Moldova, fizica i tehnika], 3, 17-29
[51] Vacaru, S. (1994). Applications of Nearly Autoparallel Maps and of Twistor-Gauge Methods in Gravitation and Condenced States, Summary of PhD Thesis, ”Al.I.Cuza” University, Iasi, Romania
[52] Vacaru, S. and Ostaf, S. (1994). Buletinul Academiei de Stiinte a Republicii Moldova, Fizica si Tehnica [Izvestia Academii Nauk Respubliky Moldova, fizica i tehnika], 1, 64-72
[53] Vacaru, S. (
[54] Vacaru, S., Ostaf, S., and Goncharenko, Yu. (
[55] Vacaru, S. and Ostaf, S. (1996). Rep. Math. Phys., 37, 309-324. · Zbl 0890.53068 · doi:10.1016/0034-4877(96)84070-5
[56] Synge, J. L. (1960). Relativity: The General Theory, North Holland, Amsterdam. · Zbl 0090.18504
[57] DeWitt, B. S. (1965). Dynamical Theory of Groups and Fields, Gordon and Breach, New York. · Zbl 0169.57101
[58] Grishchuk, L. P., Petrov, A. N., and Popova, A. D. (19 · doi:10.1007/BF01224832
[59] Jackiw, R. and Teitelboim, C. (1994). In Quantum Theory of Gravity, S. M. Christensen (ed.), Hilger, Bristol, 421-430; 327–344.
[60] Mann, R. · doi:10.1103/PhysRevD.47.4438
[61] Gegenberg, J. and Kunstatter, · doi:10.1016/S0370-2693(97)01118-0
[62] Gegenberg, J. and Kunstatter, · doi:10.1103/PhysRevD.58.124010
[63] Lemos, J. P. S. and Sa., P. (1 · Zbl 1021.81848 · doi:10.1142/S0217732394000587
[64] Kamke, E. (1959). Differentialgleichungen, Lösungsmethoden und Lösungen: I. Gewöhnliche Differentialgleichungen, Leipzig, Akademische Verlagsgessellschatt, Geest & Portig K.-G. · JFM 68.0179.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.