×

An explicit and non-iterative moving-least-squares immersed-boundary method with low boundary velocity error. (English) Zbl 07640560

Summary: In this work, based on the moving-least-squares immersed boundary method, we proposed a new technique to improve the calculation of the volume force representing the body boundary. For boundary with simple geometry, we theoretically analyze the error between the desired volume force at boundary and the actual force given by the original method. The ratio between the two forces is very close to a constant and exhibits a very narrow distribution. A spatially uniform coefficient is then introduced to correct the force and can be fixed by the least-square method over all boundary markers. Such method is explicit and non-iterative, and is easy to implement into the existing scheme. Several test cases have been simulated with stationary and moving boundaries. Our new method can reduce the residual boundary velocity to the level comparable to that given by the iterative method, but requires much less computing time. Preliminary test suggests that the current method is also effective for nonuniform Eulerian grid. Moreover, the new method can be readily combined with the iterative method and further reduces the residual boundary velocity.

MSC:

76Mxx Basic methods in fluid mechanics
76Dxx Incompressible viscous fluids
74Fxx Coupling of solid mechanics with other effects

Software:

AFiD

References:

[1] Peskin, C. S., Flow patterns around heart valves: a numerical method, J. Comput. Phys., 10, 252-271 (1972) · Zbl 0244.92002
[2] Mittal, R.; Iaccarino, G., Immersed boundary methods, Annu. Rev. Fluid Mech., 37, 239-261 (2005) · Zbl 1117.76049
[3] Huang, W.-X.; Tian, F.-B., Recent trends and progress in the immersed boundary method, Proc. Inst. Mech. Eng., Part C, J. Mech. Eng. Sci., 233, 7617-7636 (2019)
[4] Peskin, C. S., The immersed boundary method, Acta Numer., 1-36 (2002)
[5] Uhlmann, M., An immersed boundary method with direct forcing for the simulation of particulate flows, J. Comput. Phys., 209, 448-476 (2005) · Zbl 1138.76398
[6] Vanella, M.; Balaras, E., Direct Lagrangian Forcing Methods Based on Moving Least Squares, 45-79 (2020), Springer Singapore: Springer Singapore Singapore · Zbl 1512.76092
[7] Spandan, V.; Meschini, V.; Ostilla-Mónico, R.; Lohse, D.; Querzoli, G.; de Tullio, M. D.; Verzicco, R., A parallel interaction potential approach coupled with the immersed boundary method for fully resolved simulations of deformable interfaces and membranes, J. Comput. Phys., 348, 567-590 (2017)
[8] Mittal, R.; Seo, J. H.; Vedula, V.; Choi, Y. J.; Liu, H.; Huang, H. H.; Jain, S.; Younes, L.; Abraham, T.; George, R. T., Computational modeling of cardiac hemodynamics: current status and future outlook, J. Comput. Phys., 305, 1065-1082 (2016) · Zbl 1349.92010
[9] Kempe, T.; Fröhlich, J., An improved immersed boundary method with direct forcing for the simulation of particle laden flows, J. Comput. Phys., 231, 3663-3684 (2012) · Zbl 1402.76143
[10] Uhlmann, M.; Doychev, T., Sedimentation of a dilute suspension of rigid spheres at intermediate Galileo numbers: the effect of clustering upon the particle motion, J. Fluid Mech., 752, 310-348 (2014)
[11] Iaccarino, G.; Verzicco, R., Immersed boundary technique for turbulent flow simulations, Appl. Mech. Rev., 56, 331-347 (2003)
[12] Wu, J.; Shu, C., Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications, J. Comput. Phys., 228, 1963-1979 (2009) · Zbl 1243.76081
[13] Wang, S.; Zhang, X., An immersed boundary method based on discrete stream function formulation for two- and three-dimensional incompressible flows, J. Comput. Phys., 230, 3479-3499 (2011) · Zbl 1316.76083
[14] Su, S.-W.; Lai, M.-C.; Lin, C.-A., An immersed boundary technique for simulating complex flows with rigid boundary, Comput. Fluids, 36, 313-324 (2007) · Zbl 1177.76299
[15] Wang, Z.; Fan, J.; Luo, K., Combined multi-direct forcing and immersed boundary method for simulating flows with moving particles, Int. J. Multiph. Flow, 34, 283-302 (2008)
[16] Ji, C.; Munjiza, A.; Williams, J., A novel iterative direct-forcing immersed boundary method and its finite volume applications, J. Comput. Phys., 231, 1797-1821 (2012) · Zbl 1408.76404
[17] Lau, E. M.; Huang, W.-X.; Xu, C.-X., Progression of heavy plates from stable falling to tumbling flight, J. Fluid Mech., 850, 1009-1031 (2018)
[18] Shin, S. J.; Chang, C. B.; Sung, H. J., Simulation of a valveless pump with an elastic tube, Int. J. Heat Fluid Flow, 38, 13-23 (2012)
[19] Calderer, A.; Kang, S.; Sotiropoulos, F., Level set immersed boundary method for coupled simulation of air/water interaction with complex floating structures, J. Comput. Phys., 277, 201-227 (2014) · Zbl 1349.76438
[20] Huang, W.-X.; Chang, C. B.; Sung, H. J., Three-dimensional simulation of elastic capsules in shear flow by the penalty immersed boundary method, J. Comput. Phys., 231, 3340-3364 (2012) · Zbl 1404.74159
[21] Le, D.-V.; White, J.; Peraire, J.; Lim, K. M.; Khoo, B., An implicit immersed boundary method for three-dimensional fluid-membrane interactions, J. Comput. Phys., 228, 8427-8445 (2009) · Zbl 1400.76024
[22] Shoele, K.; Zhu, Q., Flow-induced vibrations of a deformable ring, J. Fluid Mech., 650, 343-362 (2010) · Zbl 1189.74042
[23] Shi, S. J.; Huang, W.; Sung, H., Assessment of regularized delta functions and feedback forcing schemes for an immersed boundary method, Int. J. Numer. Methods Fluids, 58, 263-286 (2008) · Zbl 1391.76576
[24] Yang, X.; Zhang, X.; Li, Z.; He, G.-W., A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations, J. Comput. Phys., 228, 7821-7836 (2009) · Zbl 1391.76590
[25] Vanella, M.; Balaras, E., A moving-least-squares reconstruction for embedded-boundary formulations, J. Comput. Phys., 228, 6617-6628 (2009) · Zbl 1173.65333
[26] Pinelli, A.; Naqavi, I.; Piomelli, U.; Favier, J., Immersed-boundary methods for general finite-difference and finite-volume Navier-Stokes solvers, J. Comput. Phys., 229, 9073-9091 (2010) · Zbl 1427.76053
[27] Krishnan, S.; Shaqfeh, E. S.; Iaccarino, G., Fully resolved viscoelastic particulate simulations using unstructured grids, J. Comput. Phys., 338, 313-338 (2017) · Zbl 1415.76500
[28] Lancaster, P.; Salkauskas, K., Surfaces generated by moving least squares methods, Math. Comput., 37, 141-158 (1981) · Zbl 0469.41005
[29] de Tullio, M. D.; Pascazio, G., A moving-least-squares immersed boundary method for simulating the fluid-structure interaction of elastic bodies with arbitrary thickness, J. Comput. Phys., 325, 201-225 (2016) · Zbl 1375.74031
[30] Rai, M. M.; Moin, P., Direct simulations of turbulent flow using finite-difference schemes, J. Comput. Phys., 96, 15-53 (1991) · Zbl 0726.76072
[31] Verzicco, R.; Orlandi, P., A finite-difference scheme for three-dimensional incompressible flows in cylindrical coordinates, J. Comput. Phys., 123, 402-414 (1996) · Zbl 0849.76055
[32] Van Der Poel, E. P.; Ostilla-Mónico, R.; Donners, J.; Verzicco, R., A pencil distributed finite difference code for strongly turbulent wall-bounded flows, Comput. Fluids, 116, 10-16 (2015) · Zbl 1390.76250
[33] Kim, J.; Kim, D.; Choi, H., An immersed-boundary finite-volume method for simulations of flow in complex geometries, J. Comput. Phys., 171, 132-150 (2001) · Zbl 1057.76039
[34] Fornberg, B., Steady viscous flow past a sphere at high Reynolds numbers, J. Fluid Mech., 190, 471-489 (1988)
[35] Johnson, T. A.; Patel, V. C., Flow past a sphere up to a Reynolds number of 300, J. Fluid Mech., 378, 19-70 (2000)
[36] Constantinescu, G.; Squires, K., LES and DES investigations of turbulent flow over a sphere, AIAA J., 70, 267-298 (2000) · Zbl 1113.76354
[37] Sela, R.; Zemach, E.; Feldman, Y., A semi-implicit direct forcing immersed boundary method for periodically moving immersed bodies: a Schur complement approach, Comput. Methods Appl. Mech. Eng., 373, Article 113498 pp. (2021) · Zbl 1506.74464
[38] Blackburn, M. H., Mass and momentum transport from a sphere in steady and oscillatory flows, Phys. Fluids, 14, 3997-4011 (2002) · Zbl 1185.76055
[39] Peng, C.; Wang, L.-P., Force-amplified, single-sided diffused-interface immersed boundary kernel for correct local velocity gradient computation and accurate no-slip boundary enforcement, Phys. Rev. E, 101, Article 053305 pp. (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.