×

Flow-induced vibrations of a deformable ring. (English) Zbl 1189.74042

Summary: To understand flow-induced vibrations of deformable objects, we numerically investigate dynamics of a pressurized elastic ring pinned at one point within a uniform flow by using an immersed-boundary algorithm. The boundary of the ring consists of a fibre with no bending stiffness, which can be modelled as a linear spring with spring constant \(k\) and zero unstretched length. The vibration of the ring is decomposed into two parts: a pitching motion that includes a rigid-body rotation and a flexible bending motion in the transverse direction, and a tapping motion in the longitudinal direction. The pitching motion is dominated by the frequency of vortex shedding, whereas the primary frequency of the tapping motion is twice the frequency of vortex shedding. At the Reynolds number of 100, resonance is observed when \(k \sim 0.2\) (\(k\) is normalized by the diameter of the undeformed ring, the speed of the upcoming flow and the fluid density). Across the resonance region, abrupt jumps in terms of the motion amplitudes as well as the hydrodynamic loads are recorded. Within the resonance region, the lift force demonstrates a beating phenomenon reminiscent of findings through reduced models and low-degree-of-freedom systems.

MSC:

74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76D17 Viscous vortex flows
Full Text: DOI

References:

[1] DOI: 10.1063/1.866978 · doi:10.1063/1.866978
[2] DOI: 10.1103/PhysRevLett.99.144503 · doi:10.1103/PhysRevLett.99.144503
[3] Vogel, Life in Moving Fluids: The Physical Biology of Flow (1996)
[4] DOI: 10.1017/S0022112007005307 · Zbl 1124.76011 · doi:10.1017/S0022112007005307
[5] DOI: 10.1016/j.jcp.2003.07.024 · Zbl 1047.76575 · doi:10.1016/j.jcp.2003.07.024
[6] DOI: 10.1146/annurev.fl.04.010172.001525 · doi:10.1146/annurev.fl.04.010172.001525
[7] DOI: 10.1007/BF02897870 · Zbl 1039.76037 · doi:10.1007/BF02897870
[8] DOI: 10.1063/1.1668671 · Zbl 1186.76020 · doi:10.1063/1.1668671
[9] DOI: 10.1016/S0065-2156(08)70153-4 · Zbl 0747.76069 · doi:10.1016/S0065-2156(08)70153-4
[10] DOI: 10.1038/nature01232 · doi:10.1038/nature01232
[11] DOI: 10.1002/fld.1867 · Zbl 1262.76067 · doi:10.1002/fld.1867
[12] DOI: 10.1143/JPSJ.24.392 · doi:10.1143/JPSJ.24.392
[13] DOI: 10.1016/j.jcp.2007.03.005 · Zbl 1343.76027 · doi:10.1016/j.jcp.2007.03.005
[14] Spalart, AGARDCP 438 pp 5.1– (1988)
[15] DOI: 10.1017/S0022112088000345 · Zbl 0641.76050 · doi:10.1017/S0022112088000345
[16] DOI: 10.1006/jcph.1996.0036 · Zbl 0848.76052 · doi:10.1006/jcph.1996.0036
[17] DOI: 10.1006/jcph.1993.1051 · Zbl 0762.92011 · doi:10.1006/jcph.1993.1051
[18] DOI: 10.1017/S0962492902000077 · Zbl 1123.74309 · doi:10.1017/S0962492902000077
[19] DOI: 10.1016/0021-9991(77)90100-0 · Zbl 0403.76100 · doi:10.1016/0021-9991(77)90100-0
[20] DOI: 10.1016/j.jfluidstructs.2007.11.006 · doi:10.1016/j.jfluidstructs.2007.11.006
[21] Nayfeh, Nonlinear Oscillations (1979)
[22] DOI: 10.1146/annurev.bb.23.060194.004035 · doi:10.1146/annurev.bb.23.060194.004035
[23] DOI: 10.1006/jcph.1997.5859 · Zbl 0908.76064 · doi:10.1006/jcph.1997.5859
[24] DOI: 10.1016/j.jcp.2004.09.017 · Zbl 1143.76538 · doi:10.1016/j.jcp.2004.09.017
[25] DOI: 10.1126/science.1088295 · doi:10.1126/science.1088295
[26] DOI: 10.1006/jcph.2000.6483 · Zbl 0954.76066 · doi:10.1006/jcph.2000.6483
[27] DOI: 10.1006/jcph.2001.6778 · Zbl 1057.76039 · doi:10.1006/jcph.2001.6778
[28] DOI: 10.1017/S0022112092001617 · Zbl 0754.76043 · doi:10.1017/S0022112092001617
[29] DOI: 10.1103/PhysRevLett.97.134502 · doi:10.1103/PhysRevLett.97.134502
[30] DOI: 10.1242/jeb.016279 · doi:10.1242/jeb.016279
[31] DOI: 10.1017/S0022112004008778 · Zbl 1163.76348 · doi:10.1017/S0022112004008778
[32] DOI: 10.1006/jcph.2002.7066 · Zbl 1130.76406 · doi:10.1006/jcph.2002.7066
[33] DOI: 10.1016/0045-7825(81)90049-9 · Zbl 0482.76039 · doi:10.1016/0045-7825(81)90049-9
[34] DOI: 10.1017/S0022112008002103 · Zbl 1146.76020 · doi:10.1017/S0022112008002103
[35] DOI: 10.1006/jfls.1998.0195 · doi:10.1006/jfls.1998.0195
[36] DOI: 10.1038/35048530 · doi:10.1038/35048530
[37] DOI: 10.1002/fld.1650040703 · Zbl 0559.76031 · doi:10.1002/fld.1650040703
[38] DOI: 10.1016/S0889-9746(88)90058-8 · doi:10.1016/S0889-9746(88)90058-8
[39] DOI: 10.1002/fld.1650110706 · doi:10.1002/fld.1650110706
[40] DOI: 10.1017/S0022112008002218 · Zbl 1145.76478 · doi:10.1017/S0022112008002218
[41] DOI: 10.1146/annurev.fluid.36.050802.122128 · Zbl 1125.74323 · doi:10.1146/annurev.fluid.36.050802.122128
[42] DOI: 10.1137/S003613990342534X · Zbl 1074.74024 · doi:10.1137/S003613990342534X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.