×

Dynamic response of biaxially loaded double-layer viscoelastic orthotropic nanoplate system under a moving nanoparticle. (English) Zbl 1423.74534

Summary: In this paper, dynamic behavior of double layered nanoplate systems (DLNPS) with respect to a moving nanoparticle is investigated. Both layers of DLNPS are assumed to be orthotropic and each layer is bearing a biaxial load while internal damping effects are also taken into account. Furthermore, coupling between layers are modeled using Kelvin-Voigt viscoelastic theory and moving nanoparticles path are assumed to be linear and circular with constant velocities. Governing equations of motion are derived by using D’Alembert’s principle, Kirchhoff-Love plate and Eringen’s nonlocal theory. Galerkin’s and Laplace transform methods is used to solve the governing equations and analytical solution is presented for linear moving nanoparticle while close-form solution is obtained for circular moving nanoparticle. In order to clarify the influence of different parameters such as small scale effect, stiffness and damping in coupling, biaxial compression and tension of layers, path of the moving mass, etc. on dynamic behavior of each layer, parametric study is presented. Accordingly, with the brand new discussions in moving atoms, molecules, nanocars, nanotrims, point loads on different nanosctructures using scanning tunneling microscopes (STM) and atomic force microscopes (AFM), this study could be a step forward in understanding such kind of behaviors.

MSC:

74K20 Plates
82D80 Statistical mechanics of nanostructures and nanoparticles
74M25 Micromechanics of solids
Full Text: DOI

References:

[1] Akimov, A. V.; Nemukhin, A. V.; moskovsky, A. A.; Kolomeisky, A. B.; Tour, J. M., Molecular dynamics of surface-moving thermally driven nanocars, Journal of Chemical Theory and Computation, 4, 652-656, (2008)
[2] Beaussart, A.; El-Kirat-Chatel, S.; Sullan, R. M.A.; Alsteens, D.; Herman, P.; Derclaye, S., Quantifying the forces guiding microbial cell adhesion using single-cell force spectroscopy, Nature Protocols, 9, 5, 1049-1055, (2014)
[3] Bergman, R. M., Asymptotic analysis of some plane problems of the theory of elasticity with couple stresses, Theory of Elasticity for a Semilinear Material, 32, 6, 1070-1074, (1968) · Zbl 0198.58702
[4] Cartagena, A.; Raman, A., Local viscoelastic properties of live cells investigated using dynamic and quasi-static atomic force microscopy methods, Biophysical Journal, 106, 5, 1033-1043, (2014)
[5] Celotta, R. J.; Balakirsky, S. B.; Fein, A. P.; Hess, F. M.; Rutter, G. M.; Stroscio, J. A., Invited article: autonomous assembly of atomically perfect nanostructures using a scanning tunneling microscope, Review of Scientific Instruments, 85, 12, (2014)
[6] Chiang, P. T.; Mielke, J.; Godoy, J.; Guerrero, J. M.; Alemany, L. B.; Villagomez, C. J., Toward a light-driven motorized nanocar: synthesis and initial imaging of single molecules, ACS Nano, 6, 1, 592-597, (2012)
[7] Custance, O.; Perez, R.; Morita, S., Atomic force microscopy as a tool for atom manipulation, Nature Nanotechnology, 4, 12, 803-810, (2009)
[8] Dai, H. L.; Wang, L.; Abdelkefi, A.; Ni, Q., On nonlinear behavior and buckling of fluid-transporting nanotubes, International Journal of Engineering Science, 87, 13-22, (2015)
[9] Darvish Ganji, M.; Ghorbanzadeh Ahangari, M.; Emami, S. M., Carborane-wheeled nanocar moving on graphene/graphyne surfaces: van der Waals corrected density functional theory study, Materials Chemistry and Physics, 148, 1-2, 435-443, (2014)
[10] Detsri, E. (2016). Novel colorimetric sensor for mercury (II) based on layer-by-layer assembly of unmodified silver triangular nanoplates. Chinese Chemical Letters, In Press. doi: 10.1016/j.cclet.2016.05.008.
[11] Ding, J.; Zhang, K.; Wei, G.; Su, Z., Fabrication of polypyrrole nanoplates decorated with silver and gold nanoparticles for sensor applications, RSC Advances, 5, 85, 69745-69752, (2015)
[12] Ebrahimi, F.; Barati, M. R., A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures, International Journal of Engineering Science, 107, 183-196, (2016)
[13] Ebrahimi, F.; Barati, M. R.; Dabbagh, A., A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates, International Journal of Engineering Science, 107, 169-182, (2016)
[14] Eringen, A. C., On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of Applied Physics, 54, 9, 4703-4710, (1983)
[15] Eringen, A. C., Nonlocal continuum field theories, (2002), Springer-Verlag New York · Zbl 1023.74003
[16] Esen, I., A new finite element for transverse vibration of rectangular thin plates under a moving mass, Finite Elements in Analysis and Design, 66, 26-35, (2013) · Zbl 1282.74087
[17] Fernández-Sáez, J.; Zaera, R.; Loya, J. A.; Reddy, J. N., Bending of Euler-Bernoulli beams using Eringen’s integral formulation: A paradox resolved, International Journal of Engineering Science, 99, (2016), 107-101 · Zbl 1423.74477
[18] Filho, F. V., Dynamic influence lines of beams and frames, Journal of the Structural Division, 92, 2, 371-386, (1966)
[19] Fleck, N. A.; Muller, G. M.; Ashby, M. F.; Hutchinson, J. W., Strain gradient plasticity: theory and experiment, Acta Metallurgica et Materialia, 42, 2, 475-487, (1994)
[20] García-López, V.; Chu, P. L.E.; Chiang, P. T.; Sun, J.; Marti, A. A.; Tour, J. M., Synthesis of a light-driven motorized nanocar, Asian Journal of Organic Chemistry, 4, 11, 1308-1314, (2015)
[21] García-López, V.; Jeffet, J.; Kuwahara, S.; Marti, A. A.; Ebenstein, Y.; Tour, J. M., Synthesis and photostability of unimolecular submersible nanomachines: toward single-molecule tracking in solution, Organic Letters, 18, 10, 2343-2346, (2016)
[22] Ghafoori, E.; Asghari, M., Dynamic analysis of laminated composite plates traversed by a moving mass based on a first-order theory, Composite Structures, 92, 1865-1876, (2010)
[23] Ghorbanpour Arani, A.; Kolahchi, R.; Gharbi Afshar, H., Dynamic analysis of embedded PVDF nanoplate subjected to a moving nanoparticle on an arbitrary elliptical path, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 37, 3, 973-986, (2015)
[24] Ghorbanzadeh Ahangari, M.; Darvish Ganji, M.; Jalali, A., Interaction between fullerene-wheeled nanocar and gold substrate: A DFT study, Physica E, 83, 174-179, (2016)
[25] Godoy, J.; Vives, G.; Tour, J. M., Synthesis of highly fluorescent BODIPY-based nanocars, Organic Letters, 12, 7, 1464-1467, (2010)
[26] Gross, L.; Rieder, K. H.; Moresco, F.; Stojkovic, S. M.; Gourdon, A.; Joachim, C., Trapping and moving metal atoms with a six-leg molecule, Nature Materials, 4, 12, 892-895, (2005)
[27] Hla, S. W., Scanning tunneling microscopy single atom/molecule anipulation and its application to nanoscience and technology, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 23, 4, 1351-1360, (2005)
[28] Huang, X. J.; Choi, Y. K., Chemical sensors based on nanostructured materials, Sensors and Actuators B, 122, 659-671, (2007)
[29] Hui, Y.; Gomez-Diaz, J. S.; Qian, Z.; Alu, A.; Rinaldi, M., Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing, Nature Communications, 7, 11249-11255, (2016)
[30] Jeong, W.; Lee, M.; Lee, H.; Lee, H.; Kim, B.; Park, J. Y., Ultraflat au nanoplates as a new building block for molecular electronics, Nanotechnology, 27, 21, 215601-215608, (2016)
[31] Jing, Z.; Zhan, J., Fabrication and gas-sensing properties of porous zno nanoplates, Advanced Materials, 20, 23, 4547-4551, (2008)
[32] Kadivar, M. H.; Mohebpour, S. R., Finite element dynamic analysis of unsymmetric composite laminated beams with shear effect and rotary inertia under the action of moving loads, Finite Elements in Analysis and Design, 29, 3-4, 259-273, (1998) · Zbl 0921.73245
[33] Karličić, D.; Kozić, P.; Pavlović, R., Free transverse vibration of nonlocal viscoelastic orthotropic multi-nanoplate system (MNPS) embedded in a viscoelastic medium, Composite Structures, 115, 89-99, (2014)
[34] Kiani, K., Small-scale effect on the vibration of thin nanoplates subjected to moving nanoparticle via nonlocal continuum theory, Journal of Sound and Vibration, 330, 4896-4914, (2011)
[35] Kiani, K., Nonlocal continuum-based modeling of a nanoplate subjected to a moving nanoparticle. part I: theoretical formulations, Physica E, 44, 229-248, (2011)
[36] Kiani, K., Nonlocal continuum-based modeling of a nanoplate subjected to a moving nanoparticle. part II: parametric studies, Physica E, 44, 249-269, (2011)
[37] Kiani, K., Vibrations of biaxially tensioned-embedded nanoplates for nanoparticle delivery, Indian Journal of Science and Technology, 6, 7, 4894-4902, (2013)
[38] Kröner, E., Elasticity theory of materials with long range cohesive forces, International Journal of Solids and Structures, 3, 5, 731-742, (1967) · Zbl 0163.19402
[39] Lam, D. C.C.; Yang, F.; Chong, A. C.M.; Wang, J.; Tong, P., Experiments and theory in strain gradient elasticity, Journal of the Mechanics and Physics of Solids, 51, 8, 1477-1508, (2003) · Zbl 1077.74517
[40] Lei, Y.; Adhikari, S.; Friswell, M. I., Vibration of nonlocal Kelvin-Voigt viscoelastic damped Timoshenko beams, International Journal of Engineering Science, 66-67, 1-13, (2013) · Zbl 1423.74398
[41] Li, L.; Hu, Y., Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory, International Journal of Engineering Science, 97, 84-94, (2015) · Zbl 1423.74495
[42] Li, L.; Hu, Y., Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material, International Journal of Engineering Science, 107, 77-97, (2016) · Zbl 1423.74496
[43] Li, L.; Xiaobai, L.; Yujin, H., Free vibration analysis of nonlocal strain gradient beams made of functionally graded material, International Journal of Engineering Science, 102, 77-92, (2016) · Zbl 1423.74399
[44] Meirovitch, L., Analytical methods in vibrations, (1967), The Macmillan Company New York · Zbl 0166.43803
[45] Mindlin, R. D.; Tiersten, H. F., Effects of couple-stresses in linear elasticity, Archive for Rational Mechanics and Analysis, 11, 1, 415-448, (1962) · Zbl 0112.38906
[46] Moll, N.; Schuler, B.; Kawai, S.; Xu, F.; Peng, L.; Orita, A., Image distortions of a partially fluorinated hydrocarbon molecule in atomic force microscopy with carbon monoxide terminated tips, Nano Letters, 14, 11, 6127-6131, (2014)
[47] Morin, J. F.; Shirai, Y.; Tour, J. M., En route to a motorized nanocar, Organic Letters, 8, 8, 1713-1716, (2006)
[48] Morin, J. F.; Sasaki, T.; Shiari, Y.; Guerrero, J. M.; Tour, J. M., Synthetic routes toward carborane-wheeled nanocars, Journal of Organic Chemistry, 72, 25, 9481-9490, (2007)
[49] Motta, N., Nanostructures for sensors, electronics. energy and environment, Journal of Nanotechnology, 3, 351-352, (2012)
[50] Motta, N., Nanostructures for sensors, electronics, energy and environment II, Journal of Nanotechnology, 6, 1937-1938, (2015)
[51] Nami, M. R.; Janghorban, M., Dynamic analysis of isotropic nanoplates subjected to moving load using state-space method based on nonlocal second order plate theory, Journal of Mechanical Science and Technology, 29, 6, 2423-2426, (2015)
[52] Nan, T.; Hui, Y.; Rinaldi, M.; Sun, N. X., Self-biased 215mhz magnetoelectric NEMS resonator for ultra-sensitive DC magnetic field detection, Scientific Reports, 3, 1985-1990, (2013)
[53] Nejad, M. Z.; Hadi, A., Eringen’s non-local elasticity theory for bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams, International Journal of Engineering Science, 106, 1-9, (2016) · Zbl 1423.74505
[54] Nejad, M. Z.; Rastgoo, A. A., Buckling analysis of arbitrary two-directional functionally graded Euler-Bernoulli nano-beams based on nonlocal elasticity theory, International Journal of Engineering Science, 103, 1-10, (2016) · Zbl 1423.74349
[55] Nejad, M. Z.; Rastgoo, A. A., Non-local analysis of free vibration of bi-directional functionally graded Euler-Bernoulli nano-beams, International Journal of Engineering Science, 105, 1-11, (2016) · Zbl 1423.74403
[56] Nejat Pishkenari, H.; Nemati, A.; Meghdari, A.; Sohrabpour, S., A close look at the motion of C_{60} on gold, Current Applied Physics, 15, 1402-1411, (2015)
[57] Nickel, A.; Ohmann, R.; Meyer, J.; Grisolia, M.; Joachim, C.; Moresco, F., Moving nanostructures: pulse-induced positioning of supramolecular assemblies, ACS Nano, 7, 1, 191-197, (2012)
[58] Pouresmaeeli, S.; Ghavanloo, E.; Fazelzadeh, S. A., Vibration analysis of viscoelastic orthotropic nanoplates resting on viscoelastic medium, Composite Structures, 96, 405-410, (2013)
[59] Qian, Z.; Hui, Y.; Liu, F.; Kar, S.; Rinaldi, M., Single transistor oscillator based on a graphene-aluminum nitride nano plate resonator, (Proceedings of the 2013 IEEE international frequency control symposium (IFCS 2013), Prague, Czech Republic, (2013)), 559-561
[60] Rahmani, O.; Pedram, O., Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory, International Journal of Engineering Science, 77, 55-70, (2014) · Zbl 1423.74405
[61] Reddy, R.; Dorvel, B. R.; Go, J.; Nair, P. R.; Elibol, O. H.; Credo, G. M., High-k dielectric al_{2}O_{3} nanowire and nanoplate field effect sensors for improved ph sensing, Biomedical Microdevices, 13, 2, 335-344, (2011)
[62] Reddy, J. N., Theory and analysis of elastic plates and shells, (2006), CRC press
[63] Reddy, J. N., Nonlocal theories for bending, buckling and vibration of beams, International Journal of Engineering Science, 45, 288-307, (2007) · Zbl 1213.74194
[64] Rutkin, A., The World’s tiniest race, New Scientist, 229, 20-21, (2016)
[65] Sasaki, T.; Tour, J. M., Synthesis of a dipolar nanocar, Tetrahedron Letters, 48, 33, 5821-5824, (2007)
[66] Sasaki, T.; Guerrero, J. M.; Tour, J. M., The assembly line: self-assembling nanocars, Tetrahedron, 64, 8522-8529, (2008)
[67] Shirai, Y.; Osgood, A. J.; Zhao, Y.; Kelly, K. F.; Tour, J. M., Directional control in thermally driven single-molecule nanocars, Nano Letters, 5, 11, 2330-2334, (2005)
[68] Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A., Nanostructured plasmonic sensors, Chemical Reviews, 108, 494-521, (2008)
[69] Taati, E., Analytical solutions for the size dependent buckling and postbuckling behavior of functionally graded micro-plates, International Journal of Engineering Science, 100, 45-60, (2016) · Zbl 1423.74354
[70] Taheri, M. R.; Ting, E. C., Dynamic response of plates to moving loads: finite element method, Computers & Structures, 34, 3, 509-521, (1990) · Zbl 0721.73041
[71] Taheri, M. R., Dynamic response of plates to moving loads, structural impedance and finite element methods, (1987), Ph.D. Dissertation, Purdue University
[72] Tang, X.; Lai, K. W.C., Quantitative study of AFM-based nanopatterning of graphene nanoplate, (14th IEEE international conference on nanotechnology, 20, (2014)), 54-57
[73] Thai, H. T., A nonlocal beam theory for bending, buckling, and vibration of nanobeams, International Journal of Engineering Science, 52, 56-64, (2011) · Zbl 1423.74356
[74] Tong, X.; DiLabio, G. A.; Clarkin, O. J.; Wolkow, R. A., Ring-opening radical clock reactions for hybrid organic-silicon surface nanostructures: A new self-directed growth mechanism and kinetic insights, Nano Letters, 4, 2, 357-360, (2004)
[75] Toupin, R. A., Elastic materials with couple-stresses, Archive for Rational Mechanics and Analysis, 11, 1, 385-414, (1962) · Zbl 0112.16805
[76] Tuna, M.; Kirca, M., Exact solution of Eringen’s nonlocal integral model for bending of Euler-Bernoulli and Timoshenko beams, International Journal of Engineering Science, 105, 80-92, (2016) · Zbl 1423.74518
[77] Vives, G.; Tour, J. M., Synthesis of a nanocar with organometallic wheels, Tetrahedron Letters, 50, 1427-1430, (2009)
[78] Vives, G.; Tour, J. M., Synthesis of single-molecule nanocars, Accounts of Chemical Research, 42, 3, 473-487, (2009)
[79] Wei, A.; Pan, L.; Huang, W., Recent progress in the zno nanostructure-based sensors, Materials Science and Engineering B, 176, 1409-1421, (2011)
[80] Weymouth, A. J.; Hofmann, T.; Giessibl, F. J., Quantifying molecular stiffness and interaction with lateral force microscopy, Science, 343, 6175, 1120-1122, (2014)
[81] Yoshida, D. M.; Weaver, W. J., Finite element analysis of beams and plates with moving loads, Publication of International Association for Bridges and Structural Engineering, 31, 179-195, (1971)
[82] Zhang, Y.; Chang, G.; Liu, S.; Lu, W.; Tian, J.; Sun, X., A new preparation of au nanoplates and their application for glucose sensing, Biosensors and Bioelectronics, 28, 344-348, (2011)
[83] Zhao, Y. P.; Li, S. H.; Chaney, S. B.; Shanmukh, S.; Fan, J. G.; Dluhy, R. A., Designing nanostructures for sensor applications, Journal of Electronic Materials, 35, 5, 846-851, (2006)
[84] Zribi, A.; Fortin, J., Functional thin films and nanostructures for sensors synthesis, Physics and applications, (2008), Springer
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.