×

On arbitrarily slow convergence rates for strong numerical approximations of Cox-Ingersoll-Ross processes and squared Bessel processes. (English) Zbl 1425.91401

The Cox-Ingersoll-Ross (CIR) processes are known to be used extensively today in modeling the pricing of financial derivatives. Generally, discretization methods (such as Milstein-type) are characterized by slow convergence. In the article, the authors reveals that each such discretization method achieves at most a strong convergence order of \(\frac{\delta}{2}\), where \(0 <\delta < 2\) is the dimension of the squared Bessel process associated to the considered (CIR) process. The reader can be found a refined lower bound for strong \(L^{1}\)-distances between the constructed squared Bessel processes and lower error bounds for (CIR) processes and squared Bessel processes in the general case. The investigations are of interest to researchers of this topic.

MSC:

91G20 Derivative securities (option pricing, hedging, etc.)
91G30 Interest rates, asset pricing, etc. (stochastic models)
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)

References:

[1] Alfonsi, A.: On the discretization schemes for the CIR (and Bessel squared) processes. Monte Carlo Methods Appl. 11, 355-384 (2005) · Zbl 1100.65007 · doi:10.1515/156939605777438569
[2] Alfonsi, A.: Strong order one convergence of a drift implicit Euler scheme: application to the CIR process. Stat. Probab. Lett. 83, 602-607 (2013) · Zbl 1273.65007 · doi:10.1016/j.spl.2012.10.034
[3] Berkaoui, A., Bossy, M., Diop, A.: Euler scheme for SDEs with non-Lipschitz diffusion coefficient: strong convergence. ESAIM Probab. Stat. 12, 1-11 (2008) · Zbl 1183.65004 · doi:10.1051/ps:2007030
[4] Borodin, A.N., Salminen, P.: Handbook of Brownian Motion—Facts and Formulae, 2nd edn. Birkhäuser, Basel (2002) · Zbl 1012.60003 · doi:10.1007/978-3-0348-8163-0
[5] Bossy, M., Olivero, H.: Strong convergence of the symmetrized Milstein scheme for some CEV-like SDEs. Bernoulli 24, 1995-2042 (2018) · Zbl 1426.60067 · doi:10.3150/16-BEJ918
[6] Chassagneux, J.F., Jacquier, A., Mihaylov, I.: An explicit Euler scheme with strong rate of convergence for financial SDEs with non-Lipschitz coefficients. SIAM J. Financ. Math. 7, 993-1021 (2016) · Zbl 1355.60072 · doi:10.1137/15M1017788
[7] Cox, J.C., Ingersoll, J.E. Jr., Ross, S.A.: A theory of the term structure of interest rates. Econometrica 53, 385-407 (1985) · Zbl 1274.91447 · doi:10.2307/1911242
[8] Cozma, A., Reisinger, C.: Exponential integrability properties of Euler discretization schemes for the Cox-Ingersoll-Ross process. Discrete Contin. Dyn. Syst., Ser. B 21, 3359-3377 (2016) · Zbl 1354.60078 · doi:10.3934/dcdsb.2016101
[9] Cozma, A., Reisinger, C.: Strong order 1/2 convergence of full truncation Euler approximations to the Cox-Ingersoll-Ross process. Working paper (2017). Available online at arXiv:1704.07321 · Zbl 1461.91326
[10] Deelstra, G., Delbaen, F.: Convergence of discretized stochastic (interest rate) processes with stochastic drift term. Appl. Stoch. Models Data Anal. 14, 77-84 (1998) · Zbl 0915.60064 · doi:10.1002/(SICI)1099-0747(199803)14:1<77::AID-ASM338>3.0.CO;2-2
[11] Dereich, S., Neuenkirch, A., An, S.L.: Euler-type method for the strong approximation of the Cox-Ingersoll-Ross process. Proc. R. Soc. A, Math. Phys. Eng. Sci. 468, 1105-1115 (2012) · Zbl 1364.65013 · doi:10.1098/rspa.2011.0505
[12] Gerencsér, M., Jentzen, A., Salimova, D.: On stochastic differential equations with arbitrarily slow convergence rates for strong approximation in two space dimensions. Proc. R. Soc. A, Math. Phys. Eng. Sci. 473, 20170104 (2017) · Zbl 1404.60082 · doi:10.1098/rspa.2017.0104
[13] Göing-Jaeschke, A., Yor, M.: A survey and some generalizations of Bessel processes. Bernoulli 9, 313-349 (2003) · Zbl 1038.60079 · doi:10.3150/bj/1068128980
[14] Gyöngy, I.: A note on Euler’s approximations. Potential Anal. 8, 205-216 (1998) · Zbl 0946.60059 · doi:10.1023/A:1008605221617
[15] Gyöngy, I., Rásonyi, M.: A note on Euler approximations for SDEs with Hölder continuous diffusion coefficients. Stoch. Process. Appl. 121, 2189-2200 (2011) · Zbl 1226.60095 · doi:10.1016/j.spa.2011.06.008
[16] Hairer, M., Hutzenthaler, M., Jentzen, A.: Loss of regularity for Kolmogorov equations. Ann. Probab. 43, 468-527 (2015) · Zbl 1322.35083 · doi:10.1214/13-AOP838
[17] Hefter, M., Herzwurm, A.: Optimal strong approximation of the one-dimensional squared Bessel process. Commun. Math. Sci. 15, 2121-2141 (2017) · Zbl 1453.65018 · doi:10.4310/CMS.2017.v15.n8.a2
[18] Hefter, M., Herzwurm, A.: Strong convergence rates for Cox-Ingersoll-Ross processes—full parameter range. J. Math. Anal. Appl. 459, 1079-1101 (2018) · Zbl 1388.60117 · doi:10.1016/j.jmaa.2017.10.076
[19] Hefter, M., Herzwurm, A., Müller-Gronbach, T.: Lower error bounds for strong approximation of scalar SDEs with non-Lipschitzian coefficients. Ann. Appl. Probab. (2017). https://doi.org/10.1214/18-AAP1411. Available online at. https://arxiv.org/abs/1710.08707 · Zbl 07039124 · doi:10.1214/18-AAP1411
[20] Higham, D., Mao, X.: Convergence of Monte Carlo simulations involving the mean-reverting square root process. J. Comput. Finance 8(3), 35-61 (2005) · doi:10.21314/JCF.2005.136
[21] Higham, D.J., Mao, X., Stuart, A.M.: Strong convergence of Euler-type methods for nonlinear stochastic differential equations. SIAM J. Numer. Anal. 40, 1041-1063 (2002) · Zbl 1026.65003 · doi:10.1137/S0036142901389530
[22] Hofmann, N., Müller-Gronbach, T., Ritter, K.: The optimal discretization of stochastic differential equations. J. Complex. 17(1), 117-153 (2001) · Zbl 0991.60047 · doi:10.1006/jcom.2000.0570
[23] Hu, Y.; Körezlioğlu, H. (ed.); etal., Semi-implicit Euler-Maruyama scheme for stiff stochastic equations, No. 38, 183-202 (1996), Boston · Zbl 0848.60057 · doi:10.1007/978-1-4612-2450-1_9
[24] Hutzenthaler, M., Jentzen, A.: Numerical approximations of stochastic differential equations with non-globally Lipschitz continuous coefficients. Mem. Am. Math. Soc. 236(1112), 1-99 (2015) · Zbl 1330.60084
[25] Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients. Ann. Appl. Probab. 22, 1611-1641 (2012) · Zbl 1256.65003 · doi:10.1214/11-AAP803
[26] Hutzenthaler, M., Jentzen, A., Noll, M.: Strong convergence rates and temporal regularity for Cox-Ingersoll-Ross processes and Bessel processes with accessible boundaries. Working paper (2014). Available online at arXiv:1403.6385
[27] Jentzen, A., Müller-Gronbach, T., Yaroslavtseva, L.: On stochastic differential equations with arbitrary slow convergence rates for strong approximation. Commun. Math. Sci. 14, 1477-1500 (2016) · Zbl 1355.65012 · doi:10.4310/CMS.2016.v14.n6.a1
[28] Kallenberg, O.: Foundations of Modern Probability, 2nd edn. Springer, New York (2002) · Zbl 0996.60001 · doi:10.1007/978-1-4757-4015-8
[29] Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, New York (1991) · Zbl 0734.60060
[30] Kelly, C., Lord, G.J.: Adaptive time-stepping strategies for nonlinear stochastic systems. IMA J. Numer. Anal. 38(3), 1523-1549 (2018) · Zbl 1477.65023 · doi:10.1093/imanum/drx036
[31] Mao, X.: Stochastic Differential Equations and Their Applications. Horwood, Chichester (1997) · Zbl 0892.60057
[32] Milstein, G.N., Schoenmakers, J.: Uniform approximation of the Cox-Ingersoll-Ross process. Adv. Appl. Probab. 47, 1132-1156 (2015) · Zbl 1335.65011 · doi:10.1239/aap/1449859803
[33] Müller-Gronbach, T.: Optimal pointwise approximation of SDEs based on Brownian motion at discrete points. Ann. Appl. Probab. 14, 1605-1642 (2004) · Zbl 1074.65010 · doi:10.1214/105051604000000954
[34] Neuenkirch, A., Szpruch, L.: First order strong approximations of scalar SDEs defined in a domain. Numer. Math. 128, 103-136 (2014) · Zbl 1306.60075 · doi:10.1007/s00211-014-0606-4
[35] Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 3rd edn. Springer, Berlin (1999) · Zbl 0917.60006 · doi:10.1007/978-3-662-06400-9
[36] Sabanis, S.: A note on tamed Euler approximations. Electron. Commun. Probab. 18, 47 (2013) · Zbl 1329.60237 · doi:10.1214/ECP.v18-2824
[37] Sabanis, S.: Euler approximations with varying coefficients: the case of superlinearly growing diffusion coefficients. Ann. Appl. Probab. 26, 2083-2105 (2016) · Zbl 1352.60101 · doi:10.1214/15-AAP1140
[38] Yaroslavtseva, L.: On non-polynomial lower error bounds for adaptive strong approximation of SDEs. J. Complex. 42, 1-18 (2017) · Zbl 1396.65012 · doi:10.1016/j.jco.2017.04.002
[39] Yaroslavtseva, L., Müller-Gronbach, T.: On sub-polynomial lower error bounds for quadrature of SDEs with bounded smooth coefficients. Stoch. Anal. Appl. 35, 423-451 (2017) · Zbl 1369.65012 · doi:10.1080/07362994.2016.1263157
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.