×

A Minkowski inequality for hypersurfaces in the anti-de Sitter-Schwarzschild manifold. (English) Zbl 1331.53078

Summary: We prove a sharp inequality for hypersurfaces in the \(n\)-dimensional anti-de Sitter-Schwarzschild manifold for general \(n \geq 3\). This inequality generalizes the classical Minkowski inequality for surfaces in the three-dimensional Euclidean space and has a natural interpretation in terms of the Penrose inequality for collapsing null shells of dust. The proof relies on a new monotonicity formula for inverse mean curvature flow and uses a geometric inequality established by the first author in [Publ. Math., Inst. Hautes Étud. Sci. 117, 247–269 (2013; Zbl 1273.53052)].

MSC:

53C40 Global submanifolds
83C20 Classes of solutions; algebraically special solutions, metrics with symmetries for problems in general relativity and gravitational theory

Citations:

Zbl 1273.53052

References:

[1] Andersson, L.; Dahl, M.Scalar curvature rigidity for asymptotically locally hyperbolic manifolds. Ann. Global Anal. Geom.16 (1998), no. 1, 1-27. doi: 10.1023/A:1006547905892 · Zbl 0946.53021
[2] Beckner, W.Sharp Sobolev inequalities on the sphere and the Moser‐Trudinger inequality. Ann. of Math. (2)138 (1993), no. 1, 213-242. doi: 10.2307/2946638 · Zbl 0826.58042
[3] Brendle, S.Constant mean curvature surfaces in warped product manifolds. Publ. Math. Inst. Hautes Études Sci.117 (2013), 247-269. doi: 10.1007/s10240-012-0047-5 · Zbl 1273.53052
[4] Brendle, S.; Eichmair, M.Isoperimetric and Weingarten surfaces in the Schwarzschild manifold. J. Differential Geom.94 (2013), no. 3, 387-407. · Zbl 1282.53053
[5] Brendle, S.; Wang, M.‐T.A Gibbons‐Penrose inequality for surfaces in Schwarzschild spacetime. Comm. Math. Phys.330 (2014), no. 1, 33-43. doi: 10.1007/s00220-014-1972-6 · Zbl 1306.83001
[6] Chruściel, P. T.; Herzlich, M.The mass of asymptotically hyperbolic Riemannian manifolds. Pacific J. Math.212 (2003), no. 2, 231-264. doi: 10.2140/pjm.2003.212.231 · Zbl 1056.53025
[7] Chruściel, P. T.; Nagy, G.The mass of spacelike hypersurfaces in asymptotically anti‐de Sitter space‐times. Adv. Theor. Math. Phys.5 (2001), no. 4, 697-754. · Zbl 1033.53061
[8] Ding, Q.The inverse mean curvature flow in rotationally symmetric spaces. Chin. Ann. Math. Ser. B32 (2011), no. 1, 27-44. doi: 10.1007/s11401-010-0626-z · Zbl 1211.53084
[9] Gallego, E.; Solanes, G.Integral geometry and geometric inequalities in hyperbolic space. Differential Geom. Appl.22 (2005), no. 3, 315-325. doi: 10.1016/j.difgeo.2005.01.006 · Zbl 1077.52010
[10] Gerhardt, C.Curvature problems. Series in Geometry and Topology, 39. International Press, Somerville, Mass., 2006. · Zbl 1131.53001
[11] Gerhardt, C.Inverse curvature flows in hyperbolic space. J. Differential Geom.89 (2011), no. 3, 487-527. · Zbl 1252.53078
[12] Gibbons, G. W.Collapsing shells and the isoperimetric inequality for black holes. Classical Quantum Gravity14 (1997), no. 10, 2905-2915. doi: 10.1088/0264-9381/14/10/016 · Zbl 0887.53064
[13] Guan, P.; Li, J.The quermassintegral inequalities for k‐convex starshaped domains. Adv. Math.221 (2009), no. 5, 1725-1732. doi: 10.1016/j.aim.2009.03.005 · Zbl 1170.53058
[14] Guan, P.; Ma, X.‐N.; Trudinger, N.; Zhu, X.A form of Alexandrov‐Fenchel inequality. Pure Appl. Math. Q.6 (2010), no. 4, 999-1012. doi: 10.4310/PAMQ.2010.v6.n4.a2 · Zbl 1230.52020
[15] Huisken, G.Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature. Invent. Math.84 (1986), no. 3, 463-480. doi: 10.1007/BF01388742 · Zbl 0589.53058
[16] Huisken, G.; Ilmanen, T.The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differential Geom.59 (2001), no. 3, 353-437. · Zbl 1055.53052
[17] Liu, C.‐C. M.; Yau, S.‐T.Positivity of quasilocal mass. Phys. Rev. Lett.90 (2003), no. 23, 231102, 4 pp. doi: 10.1103/PhysRevLett.90.231102 · Zbl 1267.83028
[18] Liu, C.‐C. M.; Yau, S.‐T.Positivity of quasilocal mass II. J. Amer. Math. Soc.19 (2006), no. 1, 181-204. doi: 10.1090/S0894-0347-05-00497-2 · Zbl 1081.83008
[19] Lopes de Lima, L.; Girão, F.An Alexandrov‐Fenchel‐type inequality in hyperbolic space with an application to a Penrose inequality. Preprint, June 2014.
[20] Min‐Oo, M.Scalar curvature rigidity of asymptotically hyperbolic spin manifolds. Math. Ann.285 (1989), no. 4, 527-539. doi: 10.1007/BF01452046 · Zbl 0686.53038
[21] Minkowski, H.Volumen und Oberfläche. Math. Ann.57 (1903), no. 4, 447-495. doi: 10.1007/BF01445180 · JFM 34.0649.01
[22] Neves, A.Insufficient convergence of inverse mean curvature flow on asymptotically hyperbolic manifolds. J. Differential Geom.84 (2010), no. 1, 191-229. · Zbl 1195.53096
[23] Shi, Y.; Tam, L.‐F.Rigidity of compact manifolds and positivity of quasi‐local mass. Classical Quantum Gravity24 (2007), no. 9, 2357-2366. doi: 10.1088/0264-9381/24/9/013 · Zbl 1115.83006
[24] Wang, G.; Xia, C.Isoperimetric type problems and Alexandrov‐Fenchel type inequalities in the hyperbolic space. Adv. Math.259 (2014), 532-556. doi: 10.1016/j.aim.2014.01.024 · Zbl 1292.52008
[25] Wang, M.‐T.; Yau, S.‐T.A generalization of Liu‐Yau’s quasi‐local mass. Comm. Anal. Geom.15 (2007), no. 2, 249-282. · Zbl 1171.53336
[26] Wang, X.The mass of asymptotically hyperbolic manifolds. J. Differential Geom.57 (2001), no. 2, 273-299. · Zbl 1037.53017
[27] Zhang, X.A definition of total energy‐momenta and the positive mass theorem on asymptotically hyperbolic 3‐manifolds. I. Comm. Math. Phys.249 (2004), no. 3, 529-548. doi: 10.1007/s00220-004-1056-0 · Zbl 1073.83019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.