×

High-accuracy numerical models of Brownian thermal noise in thin mirror coatings. (English) Zbl 1517.83012

Summary: Brownian coating thermal noise in detector test masses is limiting the sensitivity of current gravitational-wave detectors on Earth. Therefore, accurate numerical models can inform the ongoing effort to minimize Brownian coating thermal noise in current and future gravitational-wave detectors. Such numerical models typically require significant computational resources and time, and often involve closed-source commercial codes. In contrast, open-source codes give complete visibility and control of the simulated physics, enable direct assessment of the numerical accuracy, and support the reproducibility of results. In this article, we use the open-source SpECTRE numerical relativity code and adopt a novel discontinuous Galerkin numerical method to model Brownian coating thermal noise. We demonstrate that SpECTRE achieves significantly higher accuracy than a previous approach at a fraction of the computational cost. Furthermore, we numerically model Brownian coating thermal noise in multiple sub-wavelength crystalline coating layers for the first time. Our new numerical method has the potential to enable fast exploration of realistic mirror configurations, and hence to guide the search for optimal mirror geometries, beam shapes and coating materials for gravitational-wave detectors.

MSC:

83C35 Gravitational waves
60G35 Signal detection and filtering (aspects of stochastic processes)
80A10 Classical and relativistic thermodynamics
60H40 White noise theory
76F65 Direct numerical and large eddy simulation of turbulence
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs

References:

[1] Barsotti, LMcCuller, LEvans, MFritschel, P2018The A+ design curveTechnical ReportT1800042-v5 (LIGO Document)
[2] Cole, G. D.; Zhang, W.; Martin, M. J.; Ye, J.; Aspelmeyer, M., Nat. Photon., 7, 644-50 (2013) · doi:10.1038/nphoton.2013.174
[3] Levin, Y., Phys. Rev. D, 57, 659-63 (1998) · doi:10.1103/PhysRevD.57.659
[4] Callen, H. B.; Welton, T. A., Phys. Rev., 83, 34 (1951) · Zbl 0044.41201 · doi:10.1103/PhysRev.83.34
[5] Bernard, W.; Callen, H. B., Rev. Mod. Phys., 31, 1017 (1959) · Zbl 0090.45104 · doi:10.1103/RevModPhys.31.1017
[6] Kubo, R., Rep. Prog. Phys., 29, 255 (1966) · Zbl 0163.23102 · doi:10.1088/0034-4885/29/1/306
[7] Lovelace, G.; Demos, N.; Khan, H., Class. Quantum Grav., 35 (2018) · doi:10.1088/1361-6382/aa9ccc
[8] Fischer, N. L.; Pfeiffer, H. P., Phys. Rev. D, 105 (2022) · doi:10.1103/PhysRevD.105.024034
[9] Deppe, Net al.2022SpECTRE v2022.02.17doi:10.5281/zenodo.6127519
[10] Vu, N. L., Phys. Rev. D, 105 (2022) · doi:10.1103/PhysRevD.105.084027
[11] Kale, Let al.2019The Charm++ parallel programming system(available at: https://charm.cs.illinois.edu)
[12] Kidder, L. E., J. Comput. Phys., 335, 84-114 (2017) · Zbl 1380.65274 · doi:10.1016/j.jcp.2016.12.059
[13] Thorne, K. S.; Blandford, R. D., Modern Classical Physics (2017), Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 1398.82004
[14] Harry, G. M., Class. Quantum Grav., 19, 897-917 (2002) · Zbl 0997.83508 · doi:10.1088/0264-9381/19/5/305
[15] Hong, T.; Yang, H.; Gustafson, E. K.; Adhikari, R. X.; Chen, Y., Phys. Rev. D, 87 (2013) · doi:10.1103/PhysRevD.87.082001
[16] Arndt, D., J. Numer. Math., 29, 171-86 (2021) · Zbl 1478.65004 · doi:10.1515/jnma-2021-0081
[17] Arndt, D.; Bangerth, W.; Davydov, D.; Heister, T.; Heltai, L.; Kronbichler, M.; Maier, M.; Pelteret, J. P.; Turcksin, B.; Wells, D., Comput. Math. Appl., 81, 40-422 (2021) · Zbl 1524.65002 · doi:10.1016/j.camwa.2020.02.022
[18] Balay, Set al.2021PETSc(available at: www.mcs.anl.gov/petsc)
[19] Falgout, R. D.; Jones, J. E.; Yang, U. M., The design and implementation of hypre, a library of parallel high performance preconditioners, Numerical Solution of Partial Differential Equations on Parallel Computers, 267-94 (2006), Berlin: Springer, Berlin · Zbl 1097.65059
[20] Amato, A., Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.072001
[21] Venugopalan, G.; Arai, K.; Adhikari, R. X., Global optimization of multilayer dielectric coatings for precision measurements (2021)
[22] Vu, N L2021dgpydoi:10.5281/zenodo.5086181
[23] Hunter, J. D., Comput. Sci. Eng., 9, 90-95 (2007) · doi:10.1109/MCSE.2007.55
[24] Caswell, T Aet al.2020matplotlibdoi:10.5281/zenodo.4268928
[25] Tantau, T2021pgf—a portable graphic format for TeX(available at: https://github.com/pgf-tikz/pgf)
[26] Ahrens, J.; Geveci, B.; Law, C., Paraview: An End-User Tool for Large-Data Visualization Visualization Handbook (2005), Burlington, VT: Butterworth-Heinemann, Burlington, VT
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.