×

Nonlinear dynamics of oscillators with bilinear hysteresis and sinusoidal excitation. (English) Zbl 1177.37052

The authors investigate the transient and steady-state response of an oscillator with hysteretic restoring force and sinusoidal excitation. Hysteresis is modeled by using the bilinear model of Caughey with a hybrid system formulation. Stability and bifurcations of periodic orbits are studied using Poincaré maps. Results are compared with asymptotic expansions obtained by Caughey.

MSC:

37G15 Bifurcations of limit cycles and periodic orbits in dynamical systems
34C23 Bifurcation theory for ordinary differential equations

Software:

TC-HAT; MATCONT
Full Text: DOI

References:

[1] Hughes, D.; Wen, J. T., Preisach modeling of piezoceramic and shape memory alloy hysteresis, Smart Mater. Struct., 6, 3, 287-300 (1997)
[2] Bertotti, G., Hysteresis in Magnetism (1998), Academic Press: Academic Press San Diego
[3] Kohari, K.; Saito, T.; Kawakami, H., On a hysteresis oscillator including periodic thresholds, IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 76, 12, 2102-2107 (1993)
[4] Nasuno, S.; Kudrolli, A.; Gollub, J. P., Friction in granular layers: Hysteresis and precursors, Phys. Rev. Lett., 79, 5, 949-952 (1997)
[5] Dixit, A., Investment and hysteresis, J. Econom. Perspectives, 6, 1, 107-132 (1992)
[6] Krasnosel’skii, M. A.; Pokrovskii, A. V., Hysterant operator, Sov. Math. Dokl., 11, 29-33 (1970) · Zbl 0212.58002
[7] Krasnosel’skii, M. A.; Pokrovskii, A. V., Systems with Hysteresis (1989), Springer-Verlag New York · Zbl 1092.47508
[8] Caughey, T. K., Sinusoidal excitation of a system with bilinear hysteresis, J. Appl. Mech., 27, 4, 640-643 (1960)
[9] Caughey, T. K., Random excitation of a system with bilinear hysteresis, J. Appl. Mech., 27, 4, 649-652 (1960)
[10] Iwan, W. D., The steady-state response of a two-degree-of-freedom bilinear hysteretic system, J. Appl. Mech., 32, 151-156 (1965) · Zbl 0131.39106
[11] Masri, S. F., Forced vibration of the damped bilinear hysteretic oscillator, J. Acoust. Soc. Am., 57, 106 (1975) · Zbl 0293.70018
[12] Pratap, R.; Mukherjee, S.; Moon, F. C., Dynamic behavior of a bilinear hysteretic elasto-plastic oscillator. Part 1: Free oscillations, J. Sound Vib., 172, 3, 321-337 (1994) · Zbl 0925.73473
[13] Pratap, R.; Holmes, P., Chaos in a mapping describing elastoplastic oscillations, Nonlinear Dynam., 8, 1, 111-139 (1995)
[14] Sauter, D.; Hagedorn, P., On the hysteresis of wire cables in Stockbridge dampers, Internat. J. Non-Linear Mech., 37, 8, 1453-1459 (2002) · Zbl 1346.74150
[15] Dyke, S. J.; Spencer, B. F.; Sain, M. K.; Carlson, J. D., Experimental study of MR dampers for seismic protection, Smart Mater. Struct., 7, 5, 693-703 (1998)
[16] Graesser, E. J.; Cozzarelli, F. A., Shape-memory alloys as new materials for aseismic isolation, J. Eng. Mech., 117, 11, 2590-2608 (1991)
[17] Saadat, S.; Salichs, J.; Noori, M.; Hou, Z.; Davoodi, H.; Bar-on, I.; Suzuki, Y.; Masuda, A., An overview of vibration and seismic applications of NiTi shape memory alloy, Smart Mater. Struct., 11, 2, 218-229 (2002)
[18] L.G. Machado, D.C. Lagoudas, Nonlinear dynamics of a SMA passive vibration damping device, in: Proceedings of SPIE, vol. 6169, 2006, p. 61690X; L.G. Machado, D.C. Lagoudas, Nonlinear dynamics of a SMA passive vibration damping device, in: Proceedings of SPIE, vol. 6169, 2006, p. 61690X
[19] Boyd, J. G.; Lagoudas, D. C., A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy, Int. J. Plast., 12, 6, 805-842 (1996) · Zbl 0898.73020
[20] Webb, G. V.; Lagoudas, D. C.; Kurdila, A. J., Hysteresis modeling of SMA actuators for control applications, J. Intell. Mater. Syst. Struct., 9, 6, 432 (1998)
[21] Preisach, F., On magnetic aftereffect, Z. Phys., 94, 277-302 (1935)
[22] R. Bouc, Forced vibration of mechanical systems with hysteresis, in: Proceedings of Fourth Conference ICNO, Prague, 1967; R. Bouc, Forced vibration of mechanical systems with hysteresis, in: Proceedings of Fourth Conference ICNO, Prague, 1967
[23] G. Masing, Eigenspannungen und Verfestigung beim Messing, in: Proceedings of the Second International Congress of Applied Mechanics, 1926, pp. 332-335; G. Masing, Eigenspannungen und Verfestigung beim Messing, in: Proceedings of the Second International Congress of Applied Mechanics, 1926, pp. 332-335
[24] Duhem, P. M.M., The Evolution of Mechanics (1980), Springer, (Original edition: 1903) · Zbl 0424.01002
[25] Baber, T. T.; Noori, M. N., Random vibration of degrading, pinching systems, J. Eng. Mech., 111, 8, 1010-1026 (1985)
[26] Takács, J., Mathematics of Hysteretic Phenomena: The T (x) Model for the Description of Hysteresis (2003), Wiley-VCH · Zbl 1055.78001
[27] Raniecki, B.; Lexcellent, C.; Tanaka, K., Thermodynamic models of pseudoelastic behaviour of shape memory alloys, Arch. Mech. (Arch. Mech. Stos.), 44, 261-284 (1992) · Zbl 0825.73044
[28] Liang, C.; Rogers, C. A., The multi-dimensional constitutive relations of shape memory alloys, J. Engrg. Math., 26, 5, 429-443 (1992) · Zbl 0765.73004
[29] Bertotti, G.; Mayergoyz, I. D., The Science of Hysteresis (2006), Elsevier · Zbl 1117.34047
[30] A. Shekhawat, Nonlinear dynamics of hysteretic oscillators, MS Thesis, Department of Aerospace Engineering, Texas A&M University, College Station, 77843 Texas, August 2008; A. Shekhawat, Nonlinear dynamics of hysteretic oscillators, MS Thesis, Department of Aerospace Engineering, Texas A&M University, College Station, 77843 Texas, August 2008
[31] Kalmár-Nagy, T.; Wahi, P., Dynamics of a relay oscillator with hysteresis, 2007 46th IEEE Conference on. 2007 46th IEEE Conference on, Decision Control, 3245-3251 (2007)
[32] Natsiavas, S., Periodic response and stability of oscillators with symmetric trilinear restoring force, J. Sound Vib., 134, 2, 315-331 (1989) · Zbl 1235.70094
[33] Luo, A. C.J.; Menon, S., Global chaos in a periodically forced, linear system with a dead-zone restoring force, Chaos Solitons Fractals, 19, 5, 1189-1199 (2004) · Zbl 1069.37027
[34] Long, X. H.; Lin, G.; Balachandran, B., Grazing bifurcations in an elastic structure excited by harmonic impactor motions, Physica D (2007) · Zbl 1138.74031
[35] Thota, P.; Dankowicz, H., TC-HAT \(( \hat{T C} )\): A novel toolbox for the continuation of periodic trajectories in hybrid dynamical systems, SIAM J. Appl. Dynam. Syst., 7, 4 (2008) · Zbl 1192.34004
[36] Lenci, S.; Rega, G., Heteroclinic bifurcations and optimal control in the nonlinear rocking dynamics of generic and slender rigid blocks, Internat. J. Bifur. Chaos, 15, 6, 1901-1918 (2005) · Zbl 1092.70519
[37] Lenci, S.; Rega, G., A procedure for reducing the chaotic response region in an impact mechanical system, Nonlinear Dynam., 15, 4, 391-409 (1998) · Zbl 0914.70017
[38] Lenci, S.; Rega, G., Regular nonlinear dynamics and bifurcations of an impacting system under general periodic excitation, Nonlinear Dynam., 34, 3, 249-268 (2003) · Zbl 1041.70018
[39] Capecchi, D., Accurate solutions and stability criterion for periodic oscillations in hysteretic systems, Meccanica, 25, 3, 159-167 (1990) · Zbl 0716.70027
[40] Capecchi, D.; Masiani, R.; Vestroni, F., Periodic and non-periodic oscillations of a class of hysteretic two degree of freedom systems, Nonlinear Dynam., 13, 4, 309-325 (1997) · Zbl 0905.70016
[41] Lacarbonara, W.; Vestroni, F., Nonclassical responses of oscillators with hysteresis, Nonlinear Dynam., 32, 3, 235-258 (2003) · Zbl 1062.70599
[42] Pilipchuk, V. N.; Vakakis, A. F.; Azeez, M. A.F., Study of a class of subharmonic motions using a non-smooth temporal transformation (NSTT), Physica D, 100, 1-2, 145-164 (1997) · Zbl 0898.70012
[43] Press, W. H., Numerical Recipes in C: The Art of Scientific Computing (1992), Cambridge University Press · Zbl 0845.65001
[44] Nayfeh, A. H., Perturbation Methods (1973), Wiley: Wiley New York · Zbl 0375.35005
[45] Nayfeh, A. H.; Balachandran, B., Applied Nonlinear Dynamics (1995), Wiley New York · Zbl 0848.34001
[46] Reddy, C. K.; Pratap, R., Equivalent viscous damping for a bilinear hysteretic oscillator, J. Eng. Mech., 126, 11, 1189-1196 (2000)
[47] Luo, A. C.J., Singularity and Dynamics on Discontinuous Vector Fields (2006), Elsevier Science · Zbl 1182.37002
[48] Dhooge, A.; Govaerts, W.; Kuznetsov, Y. A., MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs, ACM Trans. Math. Softw. (TOMS), 29, 2, 141-164 (2003) · Zbl 1070.65574
[49] Dhooge, A., New features of the software MatCont for bifurcation analysis of dynamical systems, Math. Comput. Modelling Dyn. Syst., 14, 2, 147-175 (2008) · Zbl 1158.34302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.