×

Solutions to diagonal congruences with variables restricted to a box. (English) Zbl 1415.11110

The authors investigate small solutions of diagonal congruences of the form \[ \sum_{i=1}^n a_ix^k \equiv c \bmod{p}, \] where \(p\nmid a_i\) for \(i=1,\dots,n\). This problem has received much attention over the years. Now the authors obtain a best possible result in this direction, improving upon their previous results [Funct. Approx. Comment. Math. 56, No. 1, 39–48 (2017; Zbl 1434.11089)]. What they establish is that if \(n>\frac{3}{2}(k^2+k+2)\), then a solution \((x_1,\dots,x_n)\) with \(1\leq x_i \ll_k p^{1/k}\) for \(i=1,...,n\) exists. A large part of this paper is devoted to proving a sharp bound for the number of solutions to the above congruence in general cubes. The authors link this problem to integer solutions of systems of the form \[ \begin{aligned} x_1+ \cdots +x_n&= y_1+ \cdots +y_n\\ x_1^2+ \cdots + x_n^2&= y_1^2 + \cdots +y_n^2\\ \dots\\ x_1^k+ \cdots + x_n^k&= y_1^k + \cdots +y_n^k, \end{aligned} \] which come up in connection with Vinogradov’s mean value theorem. They use the recent results by J. Bourgain et al. on the number of integer solutions of systems of this form [Ann. of Math. (2) 184, No. 2, 633–682 (2016; Zbl 1408.11083)].

MSC:

11L07 Estimates on exponential sums
11L03 Trigonometric and exponential sums (general theory)
Full Text: DOI

References:

[1] R. C.Baker, Small solutions of congruences. Mathematika301983, 164-188.10.1112/S0025579300010512S0025579300010512 · Zbl 0532.10011 · doi:10.1112/S0025579300010512
[2] R. C.Baker, Diophantine Inequalities(London Mathematical Society Monographs), Clarendon Press (Oxford, 1986). · Zbl 0592.10029
[3] J.Bourgain, C.Demeter and L.Guth, Proof of the main conjecture in Vinogradov’s mean value theorem for degrees higher than three. Ann. of Math. (2)184(2) 2016, 633-682.10.4007/annals.2016.184.2.7 · Zbl 1408.11083
[4] J.Cilleruelo, M. Z.Garaev, A.Ostafe and I. E.Shparlinski, On the concentration of points of polynomial maps and applications. Math. Z.2722012, 825-837.10.1007/s00209-011-0959-7 · Zbl 1285.11027
[5] T.Cochrane, Exponential Sums and the Distributions of Solutions of Congruences(Institute of Mathematics), Academia Sinica (Taipei, Taiwan, 1994), 1-84.
[6] T.Cochrane, M.Ostergaard and C.Spencer, Small solutions of diagonal congruences. Funct. Approx. Comment. Math.56(1) 2017, 39-48.10.7169/facm/1587 · Zbl 1434.11089
[7] T.Cochrane and Z.Zheng, Small solutions of the congruence a_1x_1^2 + a_2x_2^2 + a_3x_3^2 + a_4x_4^2 ≡ c (mod p). Acta Math. Sinica (N.S.)14(2) 1998, 175-182.10.1007/BF02560204 · Zbl 0912.11015
[8] R.Dietmann, Small solutions of additive cubic congruences. Arch. Math.752000, 195-197.10.1007/s000130050492 · Zbl 1034.11004 · doi:10.1007/s000130050492
[9] V.Ramaswami, On the number of positive integers less than x and free of prime divisors greater than x^c. Bull. Amer. Math. Soc.551949, 1122-1127.10.1090/S0002-9904-1949-09337-0 · Zbl 0035.31502 · doi:10.1090/S0002-9904-1949-09337-0
[10] A.Sárközy, On products and shifted products of residues modulo p. Integers8(2) 2008, A9, 8 pp. · Zbl 1168.11009
[11] W. M.Schmidt, Small zeros of additive forms in many variables, II. Acta Math.143(3-4) 1979, 219-232.10.1007/BF02392094 · Zbl 0458.10020 · doi:10.1007/BF02392094
[12] W. M.Schmidt, Bounds on exponential sums. Acta Arith.94(3) 1984, 281-297.10.4064/aa-44-3-281-297 · Zbl 0516.10029 · doi:10.4064/aa-44-3-281-297
[13] W. M.Schmidt, Small solutions of congruences with prime modulus. In Diophantine Analysis, Proc. Number Theory Sect. Aust. Math. Soc. Conv. 1985(London Mathematical Society Lecture Notes Series 109), Cambridge University Press (Cambridge, 1986), 37-66.10.1017/CBO9780511721304.004 · Zbl 0589.10024
[14] I. E.Shparlinski and A.Zumalacárregui, On the density of zeros of diagonal forms modulo a prime. Preprint, 2017.
[15] I. M.Vinogradov, New estimates for Weyl sums. Dokl. Akad. Nauk SSSR81935, 195-198. · Zbl 0013.05303
[16] T. D.Wooley, New estimates for smooth Weyl sums. J. Lond. Math. Soc.511995, 1-13.10.1112/jlms/51.1.1 · Zbl 0833.11041 · doi:10.1112/jlms/51.1.1
[17] T. D.Wooley, Vinogradov’s mean value theorem via efficient congruencing. Ann. of Math. (2)1752012, 1575-1627.10.4007/annals.2012.175.3.12 · Zbl 1267.11105 · doi:10.4007/annals.2012.175.3.12
[18] T. D.Wooley, Vinogradov’s mean value theorem via efficient congruencing, II. Duke Math. J.1622013, 673-730.10.1215/00127094-2079905 · Zbl 1312.11066 · doi:10.1215/00127094-2079905
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.