×

Simultaneous multidiagonalization for the CS decomposition. (English) Zbl 1301.15019

The authors deal with the simultaneous reduction of the four blocks of a two-by-two block partitioned orthogonal matrix to a desired low-bandwidth. A nice motivation from the standard simultaneous bidiagonalization method is presented. Notice that in such a case the input matrix is reduced to quasi-triangular form with Householder reflectors and Givens rotations. In the next step the fact that a quasi-triangular matrix orthogonal with positive diagonal entries is the identity matrix is used. Finally, the Givens rotations are inverted.
By a diagonalization of the blocks, the CS decomposition is obtained. A new simultaneous multidiagonalization algorithm for such a decomposition is introduced. Its numerical backward stability is deduced. It is important to point out that this algorithm works with submatrices instead of individual entries, QR factorizations instead of single Householder reflectors, block Givens rotations instead of classical ones in such a way that, finally, banded forms are built. As a subproduct, the angles of the Givens rotations may prove to have analytic or geometric significance as the angles in the bidiagonal case reveal orthogonal polynomial recurrences, as in the case of CMV matrices which are banded orthogonal matrices representing the multiplication operator in terms of an orthonormal basis of Laurent polynomials (see [D. S. Watkins, SIAM Rev. 35, No. 3, 430–471 (1993; Zbl 0786.65032)] and [B. Simon, J. Comput. Appl. Math. 208, No. 1, 120–154 (2007; Zbl 1125.15027)] as well as the references therein).
The algorithm relies heavily on Level 3 BLAS routines (specifically on the QR decomposition and matrix multiplication) opening new possible applications for cache utilization, parallel computation and restrained communication.

MSC:

15B10 Orthogonal matrices
15A23 Factorization of matrices
65F30 Other matrix algorithms (MSC2010)
65Y05 Parallel numerical computation

Software:

mctoolbox
Full Text: DOI

References:

[1] Ammar, G.S., Gragg, W.B., Reichel, L.: On the eigenproblem for orthogonal matrices, Proc. 25th IEEE Conf. Decision and Control, Athens, IEEE, New York, vol. 25, pp. 1963-1966. Athens (1986) · Zbl 0548.65020
[2] Bai, Z., Demmel, J.W.: Computing the generalized singular value decomposition. SIAM J. Sci. Comput. 14(6), 1464-1486 (1993) · Zbl 0789.65024 · doi:10.1137/0914085
[3] Björck, Ȧ., Golub, G.H.: Numerical methods for computing angles between linear subspaces. Math. Comp. 27(123), 579-594 (1973) · Zbl 0282.65031 · doi:10.2307/2005662
[4] Bunse-Gerstner, A., Elsner, L.: Schur parameter pencils for the solution of the unitary eigenproblem. Linear Algebra Appl. 154/156, 741-778 (1991) · Zbl 0741.65029 · doi:10.1016/0024-3795(91)90402-I
[5] Cantero, M.J., Moral, L., Velázquez, L.: Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle. Linear Algebra Appl. 362, 29-56 (2003) · Zbl 1022.42013 · doi:10.1016/S0024-3795(02)00457-3
[6] Davis, C., Kahan, W.M.: Some new bounds on perturbation of subspaces. Bull. Amer. Math. Soc. 75, 863-868 (1969) · Zbl 0175.43204 · doi:10.1090/S0002-9904-1969-12330-X
[7] Demmel, J., Grigori, L., Hoemmen, M., Langou, J.: Communication-optimal parallel and sequential QR and LU factorizations. SIAM J. Sci. Comput. 34(1), A206-A239 (2012) · Zbl 1241.65028 · doi:10.1137/080731992
[8] Drmac̆, Z.: A tangent algorithm for computing the generalized singular value decomposition. SIAM J. Numer. Anal. 35(5), 1804-1832 (1998) · Zbl 0914.65033 · doi:10.1137/S0036142995289883
[9] Drmac̆, Z., Jessup, E.R.: On accurate quotient singular value computation in floating-point arithmetic. SIAM J. Matrix Anal. Appl. 22(3), 853-873 (2000) · Zbl 0981.65046 · doi:10.1137/S0895479896310548
[10] Edelman, A., Sutton, B.D.: The beta-Jacobi matrix model, the CS decomposition, and generalized singular value problems. Found. Comput. Math. 8(2), 259-285 (2008) · Zbl 1464.82006 · doi:10.1007/s10208-006-0215-9
[11] Hari, V.: Accelerating the SVD block-Jacobi method. Comput. 75(1), 27-53 (2005) · Zbl 1079.65046 · doi:10.1007/s00607-004-0113-z
[12] Higham, N.J.: Accuracy and stability of numerical algorithms, 2nd edn. SIAM, Philadelphia (2002) · Zbl 1011.65010
[13] Ltaief, H., Kurzak, J., Dongarra, J.: Parallel two-sided matrix reduction to band bidiagonal form on multicore architectures. IEEE Trans. Parallel Distrib. Syst. 21(4), 417-423 (2010) · doi:10.1109/TPDS.2009.79
[14] Paige, C.C.: Computing the generalized singular value decomposition. SIAM J. Sci. Stat. Comput. 7(4), 1126-1146 (1986) · Zbl 0621.65030 · doi:10.1137/0907077
[15] Paige, C.C., Wei, M.: History and generality of the CS decomposition. Linear Algebra Appl. 208/209, 303-326 (1994) · Zbl 0854.15002 · doi:10.1016/0024-3795(94)90446-4
[16] Simon, B.: CMV matrices: five years after. J. Comput. Appl. Math. 208(1), 120-154 (2007) · Zbl 1125.15027 · doi:10.1016/j.cam.2006.10.033
[17] Stewart, G.W.: On the perturbation of pseudo-inverses, projections and linear least squares problems. SIAM Rev. 19(4), 634-662 (1977) · Zbl 0379.65021 · doi:10.1137/1019104
[18] Stewart, G.W.: Computing the CS decomposition of a partitioned orthonormal matrix. Numer. Math. 40(3), 297-306 (1982) · Zbl 0516.65016 · doi:10.1007/BF01396447
[19] Sutton, B.D.: Computing the complete CS decomposition. Numer. Algorithm. 50(1), 33-65 (2009) · Zbl 1167.65360 · doi:10.1007/s11075-008-9215-6
[20] Sutton, B.D.: Stable computation of the CS decomposition: simultaneous bidiagonalization. SIAM J. Matrix Anal. Appl. 33(1), 1-21 (2012) · Zbl 1257.65023 · doi:10.1137/100813002
[21] Szegő, G.: Orthogonal Polynomials, 4th edn. American Mathematical Society, Providence (1975) · JFM 61.0386.03
[22] Van Loan, C.: Computing the CS and the generalized singular value decompositions. Numerische Mathematik 46(4), 479-491 (1985) · Zbl 0548.65020 · doi:10.1007/BF01389653
[23] Verblunsky, S.: On positive harmonic functions: a contribution to the algebra of Fourier series. Proc. London Math. Soc. S2-38(1), 125-127 (1935) · Zbl 0010.16202 · doi:10.1112/plms/s2-38.1.125
[24] Watkins, D.S.: Some perspectives on the eigenvalue problem. SIAM Rev. 35(3), 430-471 (1993) · Zbl 0786.65032 · doi:10.1137/1035090
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.