×

Reflectionless CMV matrices and scattering theory. (English) Zbl 1343.47014

Authors’ abstract: Reflectionless CMV matrices are studied using scattering theory. By changing a single Verblunsky coefficient, a full-line CMV matrix can be decoupled and written as the sum of two half-line operators. Explicit formulas for the scattering matrix associated to the coupled and decoupled operators are derived. In particular, it is shown that a CMV matrix is reflectionless iff the scattering matrix is off-diagonal which in turn provides a short proof of an important result of J. Breuer et al. [Commun. Math. Phys. 295, No. 2, 531–550 (2010; Zbl 1190.47032)]. These developments parallel those recently obtained for Jacobi matrices by V. Jakšić et al. [Commun. Math. Phys. 332, No. 2, 827–838 (2014; Zbl 1298.47042)].

MSC:

47A40 Scattering theory of linear operators
47B39 Linear difference operators
34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)

References:

[1] Breuer J., Ryckman E., Simon B.: Equality of the spectral and dynamical definitions of reflection. Commun. Math. Phys. 295(2), 531-550 (2010) · Zbl 1190.47032 · doi:10.1007/s00220-009-0945-7
[2] Cantero M.J., Moral L., Velázquez L.: Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle. Linear Algebra Appl. 362, 29-56 (2003) · Zbl 1022.42013 · doi:10.1016/S0024-3795(02)00457-3
[3] Clark, S., Gesztesy, F., Zinchenko, M.: Minimal rank decoupling of full-lattice CMV operators with scalar-and matrix-valued verblunsky coefficients. arxiv:1002.0607 (2010, Preprint) · Zbl 1172.39026
[4] Davies E.B., Simon B.: Scattering theory for systems with different spatial asymptotics on the left and right. Commun. Math. Phys. 63(3), 277-301 (1978) · Zbl 0393.34015 · doi:10.1007/BF01196937
[5] Gesztesy F., Nowell R., Pötz W.: One-dimensional scattering theory for quantum systems with nontrivial spatial asymptotics. Differ. Integral Equ. 10(3), 521-546 (1997) · Zbl 0894.34077
[6] Gesztesy F., Simon B.: Inverse spectral analysis with partial information on the potential, I. the case of an AC component. Helv. Phys. Acta 70, 66-71 (1997) · Zbl 0870.34017
[7] Gesztesy F., Zinchenko M.: A Borg-type theorem associated with orthogonal polynomials on the unit circle. J. London Math. Soc. 74(03), 757-777 (2006) · Zbl 1131.47027 · doi:10.1112/S0024610706023167
[8] Gesztesy F., Zinchenko M.: Weyl-Titchmarsh theory for CMV operators associated with orthogonal polynomials on the unit circle. J. Approx. Theory 139(1), 172-213 (2006) · Zbl 1118.47023 · doi:10.1016/j.jat.2005.08.002
[9] Jakšić, V., Kritchevski, E., Pillet, C.-A.: Mathematical theory of the Wigner-Weisskopf atom. In: Dereziński, J., Siedentop, H. (eds.) Large coulomb systems, vol. 695, Lecture Notes in Physics, pp. 145-215. Springer, Heidelberg (2006) · Zbl 1108.81054
[10] Jakšić, V., Landon, B., Panati, A.: A note on reflectionless Jacobi matrices. Commun. Math. Phys. 332(2), 827-838 (2014). doi:10.1007/s00220-014-2065-2 · Zbl 1298.47042
[11] Jakšić V., Landon B., Pillet C.-A.: Entropic fluctuations in xy chains and reflectionless. Jacobi Matrices 14(7), 1775-1800 (2013) · Zbl 1281.82017
[12] Jakšić, V., Ogata, Y., Pautrat, Y., Pillet, C.-A.: Entropic fluctuations in quantum statistical mechanics. An introduction. In: Frölich, J., Salmhofer, M., Mastropietro, V., De Roeck W. (eds.) Quantum theory from small to large scales, pp. 213-410. Oxford University Press, Oxford (2012) · Zbl 1291.82001
[13] Katznelson, Y.: An introduction to harmonic analysis, 3rd edn. Cambridge Mathematical Library, Cambridge (2004) · Zbl 1055.43001
[14] Landon, B.: Entropic fluctuations of XY quantum spin chains. Master’s thesis, McGill University (2013)
[15] Reed, M., Simon, B.: Scattering theory. vol. 3, Methods of Modern Mathematical Physics. Academic Press, London (1979) · Zbl 0405.47007
[16] Simon, B.: Orthogonal polynomials on the unit circle. American Mathematical Society, Providence (2009) · Zbl 1022.42013
[17] Simon, B.: Szego’s Theorem and its descendants: Spectral theory for L2 perturbations of orthogonal polynomials. Princeton University Press, Princeton (2010) · Zbl 0393.34015
[18] Stein, E.M., Shakarchi, R.: Fourier analysis. vol. 1, Princeton Lectures in Analysis. Princeton University Press, Princeton (2003) · Zbl 1026.42001
[19] Teschl, G.: Jacobi operators and completely integrable nonlinear lattices. American Mathematical Society, Providence (2000) · Zbl 1056.39029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.