×

Equality of the spectral and dynamical definitions of reflection. (English) Zbl 1190.47032

Summary: For full-line Jacobi matrices, Schrödinger operators, and CMV matrices, we show that being reflectionless, in the sense of the well-known property of \(m\)-functions, is equivalent to a lack of reflection in the dynamics in the sense that any state that goes entirely to \(x = - \infty\) as \(t \rightarrow - \infty\) goes entirely to \(x = \infty \) as \(t \rightarrow \infty\). This allows us to settle a conjecture of P.Deift and B.Simon [Commun.Math.Phys.90, 389–411 (1983; Zbl 0562.35026)] regarding ergodic Jacobi matrices.

MSC:

47B36 Jacobi (tridiagonal) operators (matrices) and generalizations
34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
47A40 Scattering theory of linear operators

Citations:

Zbl 0562.35026

References:

[1] Baik J., Deift P., McLaughlin K.T.-R., Miller P., Zhou X.: Optimal tail estimates for directed last passage site percolation with geometric random variables. Adv. Theor. Math. Phys. 5, 1207–1250 (2001) · Zbl 1016.15022
[2] Bernstein S.: Sur une classe de polynomes orthogonaux. Commun. Kharkow 4, 79–93 (1930) · JFM 57.1432.01
[3] Bourget O., Howland J.S., Joye A.: Spectral analysis of unitary band matrices. Commun. Math. Phys. 234, 191–227 (2003) · Zbl 1029.47016 · doi:10.1007/s00220-002-0751-y
[4] Breuer J., Ryckman E., Zinchenko M.: Right limits and reflectionless measures for CMV matrices. Commun. Math. Phys. 292, 1–28 (2009) · Zbl 1188.35172 · doi:10.1007/s00220-009-0839-8
[5] Cantero M.J., Moral L., Velázquez L.: Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle. Linear Algebra Appl. 362, 29–56 (2003) · Zbl 1022.42013 · doi:10.1016/S0024-3795(02)00457-3
[6] Craig W.: The trace formula for Schrödinger operators on the line. Commun. Math. Phys. 126, 379–407 (1989) · Zbl 0681.34026 · doi:10.1007/BF02125131
[7] Davies E.B., Simon B.: Scattering theory for systems with different spatial asymptotics on the left and right. Commun. Math. Phys. 63, 277–301 (1978) · Zbl 0393.34015 · doi:10.1007/BF01196937
[8] De Concini C., Johnson R.A.: The algebraic-geometric AKNS potentials. Ergod. Th. Dynam. Sys. 7, 1–24 (1987) · Zbl 0636.35077
[9] Deift P., Simon B.: Almost periodic Schrödinger operators, III. The absolutely continuous spectrum in one dimension. Commun. Math. Phys. 90, 389–411 (1983) · Zbl 0562.35026 · doi:10.1007/BF01206889
[10] Geronimo J.S., Teplyaev A.: A difference equation arising from the trigonometric moment problem having random reflection coefficients–an operator-theoretic approach. J. Funct. Anal. 123, 12–45 (1994) · Zbl 0820.47016 · doi:10.1006/jfan.1994.1081
[11] Gesztesy F., Krishna M., Teschl G.: On isospectral sets of Jacobi operators. Commun. Math. Phys. 181, 631–645 (1996) · Zbl 0881.58069 · doi:10.1007/BF02101290
[12] Gesztesy F., Makarov K.A., Zinchenko M.: Local ac spectrum for reflectionless Jacobi, CMV, and Schrödinger operators. Acta Appl. Math. 103, 315–339 (2008) · Zbl 1165.34050 · doi:10.1007/s10440-008-9238-y
[13] Gesztesy F., Nowell R., Pötz W.: One-dimensional scattering theory for quantum systems with nontrivial spatial asymptotics. Diff. Int. Eqs. 10, 521–546 (1997) · Zbl 0894.34077
[14] Gesztesy F., Simon B.: Uniqueness theorems in inverse spectral theory for one-dimensional Schrödinger operators. Trans. Amer. Math. Soc. 348, 349–373 (1996) · Zbl 0846.34090 · doi:10.1090/S0002-9947-96-01525-5
[15] Gesztesy F., Simon B.: Inverse spectral analysis with partial information on the potential, I. The case of an a.c. component in the spectrum. Helv. Phys. Acta 70, 66–71 (1997) · Zbl 0870.34017
[16] Gesztesy F., Yuditskii P.: Spectral properties of a class of reflectionless Schrödinger operators. J. Funct. Anal. 241, 486–527 (2006) · Zbl 1387.34120 · doi:10.1016/j.jfa.2006.08.006
[17] Gesztesy F., Zinchenko M.: A Borg-type theorem associated with orthogonal polynomials on the unit circle. J. Lond. Math. Soc. (2) 74, 757–777 (2006) · Zbl 1131.47027 · doi:10.1112/S0024610706023167
[18] Gesztesy F., Zinchenko M.: On spectral theory for Schrödinger operators with strongly singular potentials. Math. Nachr. 279, 1041–1082 (2006) · Zbl 1108.34063 · doi:10.1002/mana.200510410
[19] Gesztesy F., Zinchenko M.: Weyl–Titchmarsh theory for CMV operators associated with orthogonal polynomials on the unit circle. J. Approx. Theory 139, 172–213 (2006) · Zbl 1118.47023 · doi:10.1016/j.jat.2005.08.002
[20] Gesztesy F., Zinchenko M.: Local spectral properties of reflectionless Jacobi, CMV, and Schrödinger operators. J. Diff. Eqs. 246, 78–107 (2009) · Zbl 1165.34051 · doi:10.1016/j.jde.2008.05.006
[21] Gilbert D.J.: On subordinacy and spectral multiplicity for a class of singular differential operators. Proc. Roy. Soc. Edinburgh Sect. A 128, 549–584 (1998) · Zbl 0909.34022
[22] Johnson R.A.: The recurrent Hill’s equation. J. Diff. Eqs. 46, 165–193 (1982) · Zbl 0535.34021 · doi:10.1016/0022-0396(82)90114-0
[23] Kac, I.S.: On the multiplicity of the spectrum of a second-order differential operator. Soviet Math. Dokl. 3, 1035–1039 (1962); Russian original in Dokl. Akad. Nauk SSSR 145, 510–513 (1962) · Zbl 0131.31201
[24] Kac, I.S.: Spectral multiplicity of a second-order differential operator and expansion in eigenfunction. Izv. Akad. Nauk SSSR Ser. Mat. 27, 1081–1112 (1963) [Russian]. Erratum: Izv. Akad. Nauk SSSR 28, 951–952 (1964)
[25] Kotani, S.: Ljapunov indices determine absolutely continuous spectra of stationary random one-dimensional Schrödinger operators. In: Stochastic Analysis, K. Itǒ, ed., Amsterdam: North-Holland, 1984, pp. 225–247 · Zbl 0549.60058
[26] Kotani, S.: One-dimensional random Schrödinger operators and Herglotz functions. In: Probabilistic Methods in Mathematical Physics, K. Itǒ, N. Ikeda, eds., New York: Academic Press, 1987, pp. 219–250 · Zbl 0647.60073
[27] Kotani S., Krishna M.: Almost periodicity of some random potentials. J. Funct. Anal. 78, 390–405 (1988) · Zbl 0644.60061 · doi:10.1016/0022-1236(88)90125-5
[28] Melnikov M., Poltoratski A., Volberg A.: Uniqueness theorems for Cauchy integrals. Publ. Mat. 52, 289–314 (2008) · Zbl 1172.30013
[29] Nazarov, F., Volberg, A., Yuditskii, P.: Reflectionless measures with a point mass and singular continuous component, preprint, http://arxiv.org/abs/0711.0948v1[math-ph] , 2007
[30] Peherstorfer F., Yuditskii P.: Asymptotic behavior of polynomials orthonormal on a homogeneous set. J. Anal. Math. 89, 113–154 (2003) · Zbl 1032.42028 · doi:10.1007/BF02893078
[31] Poltoratski A., Remling C.: Reflectionless Herglotz functions and Jacobi matrices. Commun. Math. Phys. 288, 1007–1021 (2009) · Zbl 1183.47026 · doi:10.1007/s00220-008-0696-x
[32] Poltoratski, A., Simon, B., Zinchenko, M.: The Hilbert transform of a measure. to appear in J. Anal. Math. · Zbl 1211.30052
[33] Praehofer M., Spohn H.: Universal distributions for growth processes in 1 + 1 dimensions and random matrices. Phys. Rev. Lett. 84, 4882–4885 (2000) · doi:10.1103/PhysRevLett.84.4882
[34] Reed M., Simon B.: Methods of Modern Mathematical Physics, I: Functional Analysis. Academic Press, New York (1972) · Zbl 0242.46001
[35] Reed M., Simon B.: Methods of Modern Mathematical Physics, III: Scattering Theory. Academic Press, New York (1979) · Zbl 0405.47007
[36] Remling C.: The absolutely continuous spectrum of one-dimensional Schrödinger operators. Math. Phys. Anal. Geom. 10, 359–373 (2007) · Zbl 1139.81036 · doi:10.1007/s11040-008-9036-9
[37] Remling, C.: The absolutely continuous spectrum of Jacobi matrices. http://arXiv.org/abs/0706.1101v1[math-sp] , 2007 · Zbl 1139.81036
[38] Simon B.: Kotani theory for one dimensional stochastic Jacobi matrices. Commun. Math. Phys. 89, 227–234 (1983) · Zbl 0534.60057 · doi:10.1007/BF01211829
[39] Simon B.: On a theorem of Kac and Gilbert. J. Funct. Anal. 223, 109–115 (2005) · Zbl 1071.47027 · doi:10.1016/j.jfa.2004.08.015
[40] Simon, B.: Orthogonal Polynomials on the Unit Circle, Part 1: Classical Theory. AMS Colloquium Series, 54.1, Providence, RI: Amer. Math. Soc., 2005 · Zbl 1082.42020
[41] Sims R.: Reflectionless Sturm–Liouville equations. J. Comp. Appl. Math. 208, 207–225 (2007) · Zbl 1132.34021 · doi:10.1016/j.cam.2006.10.037
[42] Sodin M., Yuditskii P.: Almost periodic Sturm–Liouville operators with Cantor homogeneous spectrum. Comment. Math. Helv. 70, 639–658 (1995) · Zbl 0846.34024 · doi:10.1007/BF02566026
[43] Sodin, M., Yuditskii, P.: Almost periodic Sturm–Liouville operators with Cantor homogeneous spectrum and pseudo-continuable Weyl functions. Russian Acad. Sci. Dokl. Math. 50, 512–515 (1995); Russian original in Dokl. Akad. Nauk 339, 736–738 (1994)
[44] Sodin, M., Yuditskii, P.: Almost periodic Sturm–Liouville operators with homogeneous spectrum. In: Algebraic and Geometric Methods in Mathematical Physics, A. Boutel de Monvel, A. Marchenko, eds., Dordrecht: Kluwer, 1996, pp. 455–462 · Zbl 0844.34089
[45] Sodin M., Yuditskii P.: Almost periodic Jacobi matrices with homogeneous spectrum, infinite-dimensional Jacobi inversion, and Hardy spaces of character-automorphic functions. J. Geom. Anal. 7, 387–435 (1997) · Zbl 1041.47502
[46] Teschl, G.: Jacobi Operators and Completely Integrable Nonlinear Lattices. Mathematical Surveys and Monographs, 72, Providence, RI: Amer. Math. Soc., 2000 · Zbl 1056.39029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.