×

Two-orthogonal polynomial sequences as eigenfunctions of a third-order differential operator. (English) Zbl 1346.42035

In the vector space \(\mathcal{P}\) of polynomials with coefficients in \(\mathbb{C}\), a sequence \(\{P_n\}_{n\geq 0}\) is called a polynomial sequence if \(\text{deg} \,P_n=n\), for any \(n\geq 0\). In the dual space \(\mathcal{P}'\) formed by all the linear functionals \(u:\mathcal{P}\longrightarrow \mathbb{C}:p\mapsto\langle u,p\rangle \), there exists for each monic polynomial sequence \(\{P_n\}_{n\geq 0}\) a unique dual sequence \(\{u_n\}_{n\geq 0}\) such that \(\langle u_n,P_m\rangle=\delta_{n,m}\). For each linear operator \(T:\mathcal{P}\longrightarrow \mathcal{P}\), the relation \(\langle {}^tT(u),p\rangle=\langle u,T(p)\rangle \) defines a linear operator \({}^tT:\mathcal{P}'\longrightarrow \mathcal{P}'\) called the transpose of \(T\). The differential operator \(D:\mathcal{P}\longrightarrow \mathcal{P}:p\mapsto D(p)\), where \(D(p)(x)=p'(x)\), plays a fundamental role. We say that the orthogonal polynomial sequence \(\{P_n\}_{n\geq 0}\) is a classical sequence in the Hahn’s sense if \(\{ (n\!+\!1)^{-1}DP_{n+1} \}_{n\geq 0}\) is also orthogonal. In this paper, the authors investigate the two-orthogonal and \(\Lambda \)-Appell monic sequences \(\{P_n\}_{n\geq 0}\) in the case when \(\Lambda \) is the lowering differential operator \(\Lambda =a_0D-3a_2DxD+a_2(Dx)^2D\). They obtain a matrix differential identity satisfied by the dual sequence, proving that the resultant polynomial is a classical sequence in the Hahn’s sense.

MSC:

42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
16R60 Functional identities (associative rings and algebras)
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)

Software:

Mathematica
Full Text: DOI

References:

[1] Appell, P.: Sur une classe de polynômes. Ann. Sci. de l’Ecole Norm. Sup. (2) 9, 119-144 (1880) · JFM 12.0342.02
[2] Ben Cheikh Y.: Some results on quasi-monomiality. Appl. Math. Comput. 141, 63-76 (2003) · Zbl 1041.33008 · doi:10.1016/S0096-3003(02)00321-1
[3] Ben Cheikh, Y., Chaggara, H.: Connection problems via lowering operators. J. Comput. Appl. Math. 178, 45-61 (2005) · Zbl 1061.33006
[4] Ben Cheikh, Y.; Douak, K.: A generalized hypergeometric d-orthogonal polynomial set. C. R. Acad. Sci. Paris, t. 331, Série I, 349-354 (2000) · Zbl 1002.33003
[5] Chihara T.S.: An Introduction to Orthogonal Polynomials. Gordon and Breach, New York (1978) · Zbl 0389.33008
[6] Douak K.: The relation of the d-orthogonal polynomials to the Appell polynomials. J. Comput. Appl. Math. 70(2), 279-295 (1996) · Zbl 0863.33007 · doi:10.1016/0377-0427(95)00211-1
[7] Douak K.: On 2-orthogonal polynomials of Laguerre type. Int. J. Math. Math. Sci. 22(1), 29-48 (1999) · Zbl 0927.33006 · doi:10.1155/S0161171299220297
[8] Douak K., Maroni P.: Les polynômes orthogonaux “classiques” de dimension deux. Analysis 12, 71-107 (1992) · Zbl 0767.33004 · doi:10.1524/anly.1992.12.12.71
[9] Douak K., Maroni P: Une Caractérisation des polynômes d-orthogonaux “classiques”. J. Approx. Theory 82, 177-204 (1995) · Zbl 0849.33004 · doi:10.1006/jath.1995.1074
[10] Douak K., Maroni P.: On d-orthogonal Tchebyshev polynomials, I. Appl. Numer. Math. 24, 23-53 (1997) · Zbl 0881.33024 · doi:10.1016/S0168-9274(97)00006-8
[11] Durán A.J., Shayanfar N.: Constructing orthogonal matrix polynomials satisfying differential equations from two different Laguerre weights. Integral Transform Special Function 24(4), 263-279 (2013) · Zbl 1281.33007 · doi:10.1080/10652469.2012.688746
[12] Hahn W.: Über die Jacobischen polynome und zwei verwandte polynomklassen. Math. Zeit. 39, 634-638 (1935) · Zbl 0011.06202 · doi:10.1007/BF01201380
[13] Loureiro A., Maroni P.: Quadratic decomposition of Appell sequences. Expo. Math. 26, 177-186 (2008) · Zbl 1134.33008 · doi:10.1016/j.exmath.2007.10.002
[14] Loureiro A., Maroni P.: Quadratic decomposition of Laguerre polynomials via lowering operators. J. Approx. Theory 163, 888-903 (2011) · Zbl 1229.42028 · doi:10.1016/j.jat.2010.07.009
[15] Loureiro A., Maroni P., Yakubovich S.: On a polynomial sequence associated with the Bessel operator. Proc. Am. Math. Soc. 142(2), 467-482 (2014) · Zbl 1285.33010 · doi:10.1090/S0002-9939-2013-11658-8
[16] Maroni P.: L’orthogonalité et les récurrences de polynômes d’ordre supérieur à à deux. Ann. Fac. Sci. Toulouse 10(1), 105-139 (1989) · Zbl 0707.42019 · doi:10.5802/afst.672
[17] Maroni, P.: Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques. In: Brezinski, C. et al (eds.) Orthogonal Polynomials and their Applications. In: IMACS Ann. Comput. Appl. Math. 9 (Baltzer, Basel), 95-130 (1991) · Zbl 0944.33500
[18] Maroni P.: Two-dimensional orthogonal polynomials, their associated sets and co-recursive sets. Numer. Algorithms 3, 299-312 (1992) · Zbl 0779.42013 · doi:10.1007/BF02141938
[19] Maroni P.: Variations around classical orthogonal polynomials. Connected problems. J. Comput. Appl. Math. 48, 133-155 (1993) · Zbl 0790.33006 · doi:10.1016/0377-0427(93)90319-7
[20] Maroni, P.: Fonctions eulériennes. Polynômes orthogonaux classiques. Techniques de l’Ingénieur, traité Généralités (Sciences Fondamentales), A-154, 30 pages. Paris (1994) · Zbl 0790.33006
[21] Mesquita T.A., da Rocha Z.: Symbolic approach to the general cubic decomposition of polynomial sequences Results for several orthogonal and symmetric cases. Opusc. Math. 32(4), 675-687 (2012) · Zbl 1264.33015 · doi:10.7494/OpMath.2012.32.4.675
[22] Maroni, P.; Mesquita, T.A.: Appell polynomial sequences with respect to some differential operators. arXiv:1404.3615 (2014) · Zbl 1399.42070
[23] Van Iseghem, J.: Approximants de Padé vectoriels, Thèse d’état, Univ. des Sciences et Techniques de Lille-Flandre-Artois (1987) · Zbl 0634.65129
[24] Wolfram, S.: Mathematica, Virtual Book. http://www.wolfram.com · Zbl 1134.33008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.