×

A non-Hermitian generalisation of the Marchenko-Pastur distribution: from the circular law to multi-criticality. (English) Zbl 1460.60004

Summary: We consider the complex eigenvalues of a Wishart type random matrix model \(X = X_1 X_2^*\), where two rectangular complex Ginibre matrices \(X_{1,2}\) of size \(N \times (N + \nu)\) are correlated through a non-Hermiticity parameter \(\tau \in [0,1]\). For general \(\nu = O(N)\) and \(\tau \), we obtain the global limiting density and its support, given by a shifted ellipse. It provides a non-Hermitian generalisation of the Marchenko-Pastur distribution, which is recovered at maximal correlation \(X_1 = X_2\) when \(\tau = 1\). The square root of the complex Wishart eigenvalues, corresponding to the nonzero complex eigenvalues of the Dirac matrix \(\mathcal{D} = \begin{pmatrix} 0 & X_1 \\ X_2^* & 0 \end{pmatrix},\) are supported in a domain parametrised by a quartic equation. It displays a lemniscate type transition at a critical value \(\tau_c,\) where the interior of the spectrum splits into two connected components. At multi-criticality, we obtain the limiting local kernel given by the edge kernel of the Ginibre ensemble in squared variables. For the global statistics, we apply Frostman’s equilibrium problem to the 2D Coulomb gas, whereas the local statistics follows from a saddle point analysis of the kernel of orthogonal Laguerre polynomials in the complex plane.

MSC:

60B20 Random matrices (probabilistic aspects)
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
76D27 Other free boundary flows; Hele-Shaw flows
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
20G30 Linear algebraic groups over global fields and their integers

Software:

DLMF

References:

[1] Akemann, G., Microscopic correlation functions for the QCD Dirac operator with chemical potential, Phys. Rev. Lett., 89, 7, 072002 (2002)
[2] Akemann, G., The complex Laguerre symplectic ensemble of non-Hermitian matrices, Nuclear Phys. B, 730, 3, 253-299 (2005) · Zbl 1276.81103
[3] Akemann, G., Non-Hermitian extensions of Wishart random matrix ensembles, Acta Phys. Polon. B, 42, 5, 901-921 (2011) · Zbl 1371.60007
[4] Akemann, G.; Baik, J.; Di Francesco, P., The Oxford Handbook of Random Matrix Theory (2011), Oxford: Oxford University Press, Oxford · Zbl 1225.15004
[5] Akemann, G.; Bender, M., Interpolation between Airy and Poisson statistics for unitary chiral non-Hermitian random matrix ensembles, J. Math. Phys., 51, 10, 103524 (2010) · Zbl 1314.62058
[6] Akemann, G.; Burda, Z., Universal microscopic correlation functions for products of independent Ginibre matrices, J. Phys. A, 45, 46, 465201 (2012) · Zbl 1261.15041
[7] Akemann, G.; Cikovic, M.; Venker, M., Universality at weak and strong non-Hermiticity beyond the elliptic Ginibre ensemble, Commun. Math. Phys., 362, 3, 1111-1141 (2018) · Zbl 1428.60014
[8] Akemann, G.; Strahov, E., Dropping the independence: singular values for products of two coupled random matrices, Commun. Math. Phys., 345, 1, 101-140 (2016) · Zbl 1351.15020
[9] Ameur, Y.; Hedenmalm, H.; Makarov, N., Fluctuations of eigenvalues of random normal matrices, Duke Math. J., 159, 1, 31-81 (2011) · Zbl 1225.15030
[10] Ameur, Y.; Hedenmalm, H.; Makarov, N., Random normal matrices and Ward identities, Ann. Probab., 43, 3, 1157-1201 (2015) · Zbl 1388.60020
[11] Ameur, Y.; Kang, N-G; Makarov, N., Rescaling Ward identities in the random normal matrix model, Constr. Approx., 50, 1, 63-127 (2019) · Zbl 1451.60012
[12] Ameur, Y.; Kang, N-G; Makarov, N.; Wennman, A., Scaling limits of random normal matrix processes at singular boundary points, J. Funct. Anal., 278, 3, 108340 (2020) · Zbl 1469.60023
[13] Ameur, Y., Kang, N.-G., Seo, S.-M.: The random normal matrix model: insertion of a point charge. arXiv:1804.08587
[14] Ameur, Y.; Seo, S-M, On bulk singularities in the random normal matrix model, Constr. Approx., 47, 1, 3-37 (2018) · Zbl 1436.60017
[15] Bai, ZD, Circular law, Ann. Probab., 25, 1, 494-529 (1997) · Zbl 0871.62018
[16] Balogh, F.; Bertola, M.; Lee, S-Y; McLaughlin, KDT-R, Strong asymptotics of the orthogonal polynomials with respect to a measure supported on the plane, Commun. Pure Appl. Math., 68, 1, 112-172 (2015) · Zbl 1308.42025
[17] Balogh, F.; Merzi, D., Equilibrium measures for a class of potentials with discrete rotational symmetries, Constr. Approx., 42, 3, 399-424 (2015) · Zbl 1327.30013
[18] Bender, M., Edge scaling limits for a family of non-Hermitian random matrix ensembles, Probab. Theory Relat. Fields, 147, 1-2, 241-271 (2010) · Zbl 1188.60003
[19] Bleher, P.; Its, A., Double scaling limit in the random matrix model: the Riemann-Hilbert approach, Commun. Pure Appl. Math., 56, 4, 433-516 (2003) · Zbl 1032.82014
[20] Borodin, A.; Sinclair, CD, The Ginibre ensemble of real random matrices and its scaling limits, Commun. Math. Phys., 291, 1, 177-224 (2009) · Zbl 1184.82004
[21] Burda, Z.; Grela, J.; Nowak, MA; Tarnowski, W.; Warchoł, P., Unveiling the significance of eigenvectors in diffusing non-Hermitian matrices by identifying the underlying Burgers dynamics, Nuclear Phys. B, 897, 421-447 (2015) · Zbl 1329.82091
[22] Burda, Z.; Janik, RA; Waclaw, B., Spectrum of the product of independent random Gaussian matrices, Phys. Rev. E, 81, 4, 041132 (2010)
[23] Burda, Z.; Jarosz, A.; Livan, G.; Nowak, MA; Swiech, A., Eigenvalues and singular values of products of rectangular Gaussian random matrices, Phys. Rev. E, 82, 6, 061114-10 (2010) · Zbl 1371.60014
[24] Chafaï, D.; Hardy, A.; Maïda, M., Concentration for Coulomb gases and Coulomb transport inequalities, J. Funct. Anal., 275, 6, 1447-1483 (2018) · Zbl 1407.82045
[25] Chau, L-L; Zaboronsky, O., On the structure of correlation functions in the normal matrix model, Commun. Math. Phys., 196, 1, 203-247 (1998) · Zbl 0907.35123
[26] Claeys, T.; Kuijlaars, ABJ, Universality of the double scaling limit in random matrix models, Commun. Pure Appl. Math., 59, 11, 1573-1603 (2006) · Zbl 1111.35031
[27] Claeys, T.; Kuijlaars, ABJ; Vanlessen, M., Multi-critical unitary random matrix ensembles and the general Painlevé II equation, Ann. Math., 168, 2, 601-641 (2008) · Zbl 1179.15037
[28] Criado del Rey, J.G., Kuijlaars, A.B.J.: An equilibrium problem on the sphere with two equal charges. arXiv:1907.04801
[29] Deaño, A., Simm, N.: Characteristic polynomials of complex random matrices and Painlevé transcendents. Int. Mat. Res. Not. (2020)
[30] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, Vol. II., Robert E. Krieger Publishing Co., Inc., Melbourne (1981) · Zbl 0051.30303
[31] Fischmann, J.; Bruzda, W.; Khoruzhenko, BA; Sommers, H-J; Życzkowski, K., Induced Ginibre ensemble of random matrices and quantum operations, J. Phys. A, 45, 7, 075203 (2012) · Zbl 1241.81011
[32] Forrester, PJ, Log-gases and Random Matrices (LMS-34) (2010), Princeton: Princeton University Press, Princeton · Zbl 1217.82003
[33] Girko, VL, Circular law, Theory Probab. Appl., 29, 4, 694-706 (1985)
[34] Girko, VL, Elliptic law, Theory Probab. Appl., 30, 4, 677-690 (1986) · Zbl 0658.62023
[35] Girko, VL; Vladimirova, AI, Spectral analysis of stochastic recurrence systems of growing dimension under \(G\)-condition. Canonical equation \(K_91\), Random Oper. Stoch. Equ., 17, 3, 243-274 (2009) · Zbl 1224.15071
[36] Götze, F.; Tikhomirov, A., The circular law for random matrices, Ann. Probab., 38, 4, 1444-1491 (2010) · Zbl 1203.60010
[37] Götze, F., Tikhomirov, A.: On the asymptotic spectrum of products of independent random matrices. arXiv:1012.2710 · Zbl 1075.60017
[38] Gustafsson, B., Vasilév, A.: Conformal and potential analysis in Hele-Shaw cells. In: Advances in Mathematical Fluid Mechanics, Birkhäuser Verlag, Basel (2006) · Zbl 1122.76002
[39] Haake, F., Quantum Signatures of Chaos (1991), Heidelberg: Springer, Heidelberg · Zbl 0741.58055
[40] Hedenmalm, H.; Makarov, N., Coulomb gas ensembles and Laplacian growth, Proc. Lond. Math. Soc., 106, 4, 859-907 (2013) · Zbl 1336.82010
[41] Hedenmalm, H., Wennman, A.: Planar orthogonal polynomials and boundary universality in the random normal matrix model. arXiv:1710.06493
[42] Johansson, K., On fluctuations of eigenvalues of random Hermitian matrices, Duke Math. J., 91, 1, 151-204 (1998) · Zbl 1039.82504
[43] Kang, N-G; Makarov, N., Gaussian free field and conformal field theory, Astérisque, 353, viii+136 (2013) · Zbl 1280.81004
[44] Kanzieper, E.; Singh, N., Non-Hermitean Wishart random matrices (I), J. Math. Phys., 51, 10, 103510 (2010) · Zbl 1314.37058
[45] Leblé, T.; Serfaty, S., Large deviation principle for empirical fields of log and Riesz gases, Invent. Math., 210, 3, 645-757 (2017) · Zbl 1397.82007
[46] Lee, S-Y; Makarov, N., Topology of quadrature domains, J. Am. Math. Soc., 29, 2, 333-369 (2016) · Zbl 1355.30022
[47] Lee, S-Y; Riser, R., Fine asymptotic behavior for eigenvalues of random normal matrices: Ellipse case, J. Math. Phys., 57, 2, 023302 (2016) · Zbl 1342.82056
[48] Liu, D.-Z., Wang, Y.: Phase transitions for infinite products of large non-Hermitian random matrices. arXiv:1912.11910
[49] Marčenko, VA; Pastur, LA, Distribution of eigenvalues in certain sets of random matrices, Mat. Sb. (N.S.), 72, 114, 507-536 (1967) · Zbl 0152.16101
[50] Olver, FWJ; Lozier, DW; Boisvert, RF; Clark, CW, NIST Handbook of Mathematical Functions (2010), Cambridge: Cambridge University Press, Cambridge · Zbl 1198.00002
[51] Olver, F.W.J.: Asymptotics and Special Functions. AKP Classics, A K Peters Ltd, Wellesley, MA (1997) · Zbl 0982.41018
[52] O’Rourke, S.; Renfrew, D.; Soshnikov, A.; Vu, V., Products of independent elliptic random matrices, J. Stat. Phys., 160, 1, 89-119 (2015) · Zbl 1360.60021
[53] O’Rourke, S.; Soshnikov, A., Products of independent non-Hermitian random matrices, Electron. J. Probab., 16, 81, 2219-2245 (2011) · Zbl 1244.60011
[54] Osborn, JC, Universal results from an alternate random-matrix model for QCD with a baryon chemical potential, Phys. Rev. Lett., 93, 2, 222001 (2004)
[55] Saff, EB; Totik, V., Logarithmic Potentials with External Fields (1997), Berlin: Springer, Berlin · Zbl 0881.31001
[56] Shuryak, EV; Verbaarschot, J., Random matrix theory and spectral sum rules for the Dirac operator in QCD, Nucl. Phys. A, 560, 1, 306-320 (1993)
[57] Sommers, H-J; Crisanti, A.; Sompolinsky, H.; Stein, Y., Spectrum of large random asymmetric matrices, Phys. Rev. Lett., 60, 19, 1895-1898 (1988)
[58] Stephanov, MA, Random matrix model of QCD at finite density and the nature of the quenched limit, Phys. Rev. Lett., 76, 24, 4472 (1996)
[59] Szegő, G., Orthogonal Polynomials (1975), Providence: American Mathematical Society, Providence · Zbl 0305.42011
[60] Tao, T.; Vu, V., Random matrices: universality of ESDs and the circular law, Ann. Probab., 38, 5, 2023-2065 (2010) · Zbl 1203.15025
[61] Vinayak, BL, Spectral domain of large nonsymmetric correlated Wishart matrices, Phys. Rev. E, 90, 4, 042109 (2014)
[62] Zabrodin, A.; Wiegmann, P., Large-\(N\) expansion for the 2D Dyson gas, J. Phys. A, 39, 28, 8933-8963 (2006) · Zbl 1098.82011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.