×

Topology of quadrature domains. (English) Zbl 1355.30022

A domain \(\Omega\subset \mathbb{C}\) is a quadrature domain (in the classic sense) if \[ \int_\Omega f dA=\sum_{k=1}^m\sum_{j=0}^{m_k} c_{mj}f^{(j)}(a_k) \] holds for all analytic functions in \(\Omega\), and where the nodes \(\{a_k\}\) belong to \(\Omega\). It is known that such type of quadrature domains have an algebraic boundary. So by Green’s theorem the above quadrature identity is equivalent to \[ \int_\Omega f dA=\frac{1}{2}\oint_{\partial\Omega}f(z)r_\Omega(z)dz, \] where \[ r_\Omega(z)=\pi^{-1}\sum_{k=1}^m\sum_{j=0}^{m_k} c_{mj}\frac{j !}{(z-a_k)^{j+1}}. \]
The main achievement of the paper is a bound on the connectivity of \(\Omega\) in terms of the degree of the rational function \(r_\Omega\) and the number of poles of that functions. Previous bounds were obtained by B. Gustafsson [J. Anal. Math. 51, 91–117 (1988: Zbl 0656.30034)], and the present paper improves his results significantly. The authors consider both bounded and unbounded quadrature domains, but under the assumptions that the boundary is compact. This assumption allows to apply acircular inversion in order to transfer unbounded quadrature domains into bounded and vice versa.
It is well known that the boundary of a quadrature domain admits a Schwarz function, that is, a holomorphic function in a neighborhood of the boundary that equals to \(\bar z\) on the boundary and has poles at the nodes \(\{a_k\}\). The investigation of this function on the Schottky double of \(\Omega\) is an essential ingredient of the proof. The Schottky double of \(\Omega\) is a compact Riemann surface with conformal structure on \(\Omega\) and an anti-conformal structure on the “back” of a copy of \(\Omega\). The implementation of this technique to quadrature domains was introduced by B. Gustafsson [Acta Appl. Math. 1, 209–240 (1983: Zbl 0559.30039)]. In addition to that tool, the authors use a method from complex dynamics to determinate the number of zeros of certain harmonic polynomials, and a perturbation technique which is based on the Hele-Shaw flow.

MSC:

30C99 Geometric function theory
30E20 Integration, integrals of Cauchy type, integral representations of analytic functions in the complex plane
30C30 Schwarz-Christoffel-type mappings

References:

[1] Aharonov, Dov; Shapiro, Harold S., A minimal-area problem in conformal mapping. (Abstract). Proceedings of the Symposium on Complex Analysis, Univ. Kent, Canterbury, 1973, 1\textendash 5. London Math. Soc. Lecture Note Ser., No. 12 pp. (1974), Cambridge, Univ. Press, London · Zbl 0279.00009
[2] Aharonov, Dov; Shapiro, Harold S., Domains on which analytic functions satisfy quadrature identities, J. Anal. Math., 30, 39\textendash 73 pp. (1976) · Zbl 0337.30029
[3] Aharonov, D.; Shapiro, H. S., \it A minimal-area problem in conformal mapping - preliminary report: Part II, 70 pp. pp.
[4] Aharonov, Dov; Shapiro, Harold S.; Solynin, Alexander Yu., A minimal area problem in conformal mapping, J. Anal. Math., 78, 157\textendash 176 pp. (1999) · Zbl 0932.30021 · doi:10.1007/BF02791132
[5] Aharonov, Dov; Shapiro, Harold S.; Solynin, Alexander Yu., A minimal area problem in conformal mapping. II, J. Anal. Math., 83, 259\textendash 288 pp. (2001) · Zbl 0980.30016 · doi:10.1007/BF02790264
[6] Brannan, D. A., Coefficient regions for univalent polynomials of small degree, Mathematika, 14, 165\textendash 169 pp. (1967) · Zbl 0193.37004
[7] Caffarelli, Luis A.; Karp, Lavi; Shahgholian, Henrik, Regularity of a free boundary with application to the Pompeiu problem, Ann. of Math. (2), 151, 1, 269\textendash 292 pp. (2000) · Zbl 0960.35112 · doi:10.2307/121117
[8] Carleson, Lennart; Gamelin, Theodore W., Complex dynamics, Universitext: Tracts in Mathematics, x+175 pp. (1993), Springer-Verlag, New York · Zbl 0782.30022 · doi:10.1007/978-1-4612-4364-9
[9] Ceredni{\v{c}}enko, V. G., Inverse Logarithmic Potential Problem, Inverse and Ill-Posed Problems Series, 247 pp. (1996), VSP, Leiden, The Netherlands · Zbl 0876.31003
[10] Cowling, V. F.; Royster, W. C., Domains of variability for univalent polynomials, Proc. Amer. Math. Soc., 19, 767\textendash 772 pp. (1968) · Zbl 0159.10501
[11] Crowdy, Darren, Quadrature domains and fluid dynamics. Quadrature domains and their applications, Oper. Theory Adv. Appl. 156, 113\textendash 129 pp. (2005), Birkh\"auser, Basel · Zbl 1329.76290 · doi:10.1007/3-7643-7316-4\_5
[12] Crowdy, Darren; Marshall, Jonathan, Constructing multiply connected quadrature domains, SIAM J. Appl. Math., 64, 4, 1334\textendash 1359 pp. (2004) · Zbl 1064.30017 · doi:10.1137/S0036139903438545
[13] Davis, Philip J., The Schwarz function and its applications, xi+228 pp. (1974), The Mathematical Association of America, Buffalo, N.Y. · Zbl 0293.30001
[14] Douady, Adrien; Hubbard, John Hamal, On the dynamics of polynomial-like mappings, Ann. Sci. \'Ec. Norm. Sup\'er. (4), 18, 2, 287\textendash 343 pp. (1985) · Zbl 0587.30028
[15] Duren, Peter L., Univalent functions, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 259, xiv+382 pp. (1983), Springer-Verlag, New York · Zbl 0514.30001
[16] Elbau, Peter; Felder, Giovanni, Density of eigenvalues of random normal matrices, Comm. Math. Phys., 259, 2, 433\textendash 450 pp. (2005) · Zbl 1129.82017 · doi:10.1007/s00220-005-1372-z
[17] Epstein, Bernard, On the mean-value property of harmonic functions, Proc. Amer. Math. Soc., 13, 830 pp. (1962) · Zbl 0109.07501
[18] Epstein, Bernard; Schiffer, M. M., On the mean-value property of harmonic functions, J. Anal. Math., 14, 109\textendash 111 pp. (1965) · Zbl 0131.10003
[19] Varchenko, A. N.; \`Etingof, P. I., Why the boundary of a round drop becomes a curve of order four, University Lecture Series 3, viii+72 pp. (1992), American Mathematical Society, Providence, RI · Zbl 0768.76073
[20] Galin, L. A., Unsteady filtration with a free surface, C. R. (Doklady) Acad. Sci. URSS (N.S.), 47, 246\textendash 249 pp. (1945) · Zbl 0061.46202
[21] Geyer, Lukas, Sharp bounds for the valence of certain harmonic polynomials, Proc. Amer. Math. Soc., 136, 2, 549\textendash 555 pp. (2008) · Zbl 1133.26009 · doi:10.1090/S0002-9939-07-08946-0
[22] Griffiths, Phillip; Harris, Joseph, Principles of algebraic geometry, Wiley Classics Library, xiv+813 pp. (1994), John Wiley & Sons, Inc., New York · Zbl 0836.14001 · doi:10.1002/9781118032527
[23] Gustafsson, Bj{\`“o}rn; Vasil{\cprime }ev, Alexander, Conformal and potential analysis in Hele-Shaw cells, Advances in Mathematical Fluid Mechanics, x+231 pp. (2006), Birkh\'”auser Verlag, Basel · Zbl 1122.76002
[24] Gustafsson, Bj{\`“o}rn; Shapiro, Harold S., What is a quadrature domain?. Quadrature domains and their applications, Oper. Theory Adv. Appl. 156, 1\textendash 25 pp. (2005), Birkh\'”auser, Basel · Zbl 1086.30002 · doi:10.1007/3-7643-7316-4\_1
[25] Gustafsson, Bj{\"o}rn, Quadrature identities and the Schottky double, Acta Appl. Math., 1, 3, 209\textendash 240 pp. (1983) · Zbl 0559.30039 · doi:10.1007/BF00046600
[26] Gustafsson, Bj{\"o}rn, Singular and special points on quadrature domains from an algebraic geometric point of view, J. Anal. Math., 51, 91\textendash 117 pp. (1988) · Zbl 0656.30034 · doi:10.1007/BF02791120
[27] Gustafsson, Bj{\"o}rn, Applications of variational inequalities to a moving boundary problem for Hele-Shaw flows, SIAM J. Math. Anal., 16, 2, 279\textendash 300 pp. (1985) · Zbl 0605.76043 · doi:10.1137/0516021
[28] Gustafsson, Bj{\"o}rn, On quadrature domains and an inverse problem in potential theory, J. Anal. Math., 55, 172\textendash 216 pp. (1990) · Zbl 0745.31002 · doi:10.1007/BF02789201
[29] Gustafsson, Bj{\"o}rn; Sakai, Makoto, Properties of some balayage operators, with applications to quadrature domains and moving boundary problems, Nonlinear Anal., 22, 10, 1221\textendash 1245 pp. (1994) · Zbl 0852.35144 · doi:10.1016/0362-546X(94)90107-4
[30] Gustafsson, Bj{\"o}rn; He, Chiyu; Milanfar, Peyman; Putinar, Mihai, Reconstructing planar domains from their moments, Inverse Problems, 16, 4, 1053\textendash 1070 pp. (2000) · Zbl 0959.44010 · doi:10.1088/0266-5611/16/4/312
[31] Hedenmalm, H{\aa }kan; Makarov, Nikolai, Coulomb gas ensembles and Laplacian growth, Proc. Lond. Math. Soc. (3), 106, 4, 859\textendash 907 pp. (2013) · Zbl 1336.82010 · doi:10.1112/plms/pds032
[32] Johansson, Kurt, On fluctuations of eigenvalues of random Hermitian matrices, Duke Math. J., 91, 1, 151\textendash 204 pp. (1998) · Zbl 1039.82504 · doi:10.1215/S0012-7094-98-09108-6
[33] Karp, Lavi; Shahgholian, Henrik, Regularity of a free boundary problem, J. Geom. Anal., 9, 4, 653\textendash 669 pp. (1999) · Zbl 0965.35194 · doi:10.1007/BF02921977
[34] Khavinson, Dmitry; \'Swi{\c{a}}tek, Grzegorz, On the number of zeros of certain harmonic polynomials, Proc. Amer. Math. Soc., 131, 2, 409\textendash 414 pp. (2003) · Zbl 1034.30003 · doi:10.1090/S0002-9939-02-06476-6
[35] Klein, Avraham; Agam, Oded, Topological transitions in evaporating thin films, J. Phys. A, 45, 35, 355003, 14 pp. (2012) · Zbl 1250.82028 · doi:10.1088/1751-8113/45/35/355003
[36] Kostov, I. K.; Krichever, I.; Mineev-Weinstein, M.; Wiegmann, P. B.; Zabrodin, A., The \(\tau \)-function for analytic curves. Random matrix models and their applications, Math. Sci. Res. Inst. Publ. 40, 285\textendash 299 pp. (2001), Cambridge Univ. Press, Cambridge · Zbl 0991.37050
[37] Lee, S.-Y.; Makarov, N., Sharpness of connectivity bounds for quadrature domains
[38] Levin, A. L., An example of a doubly connected domain which admits a quadrature identity, Proc. Amer. Math. Soc., 60, 163\textendash 168 (1977) pp. (1976) · Zbl 0346.30026
[39] Neumann, C., \`“Uber das logarithmische Potential einer gewissen Ovalfl\'”ache, Abh. der math.-phys. Klasse der K\`“onigl. S\'”achs. Gesellsch. der Wiss. zu Leibzig, 59, 278\textendash 312 pp. (1907) · JFM 38.0778.01
[40] Neumann, C., \`“Uber das logarithmische Potential einer gewissen Ovalfl\'”ache, Zweite Mitteilung, 60, 53\textendash 56 pp. (1908) · JFM 39.0827.02
[41] Polubarinova-Kochina, P. Ya., On a problem of the motion of the contour of a petroleum shell, Dokl. Akad. Nauk USSR, 47, 254\textendash 257 pp. (1945) · Zbl 0061.46112
[42] Poloubarinova-Kochina, P. J., Concerning unsteady motions in the theory of filtration, Appl. Math. Mech. [Akad. Nauk SSSR. Prikl. Mat. Mech.], 9, 79\textendash 90 pp. (1945) · Zbl 0061.46109
[43] Putinar, Mihai, On a class of finitely determined planar domains, Math. Res. Lett., 1, 3, 389\textendash 398 pp. (1994) · Zbl 0869.47012 · doi:10.4310/MRL.1994.v1.n3.a10
[44] Putinar, Mihai, Extremal solutions of the two-dimensional \(L\)-problem of moments, J. Funct. Anal., 136, 2, 331\textendash 364 pp. (1996) · Zbl 0917.47014 · doi:10.1006/jfan.1996.0033
[45] Rhie, S. H., \(n\)-point gravitational lenses with \(5(n-1)\) images
[46] Richardson, S., Hele-Shaw flows with a free boundary produced by the injection of fluid into a narrow channel, J. Fluid Mech., 56, 2, 609\textendash 618 pp. (1972) · Zbl 0256.76024
[47] Shahgholian, Henrik, On quadrature domains and the Schwarz potential, J. Math. Anal. Appl., 171, 1, 61\textendash 78 pp. (1992) · Zbl 0768.31003 · doi:10.1016/0022-247X(92)90376-O
[48] Saff, Edward B.; Totik, Vilmos, Logarithmic potentials with external fields, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 316, xvi+505 pp. (1997), Springer-Verlag, Berlin · Zbl 0881.31001 · doi:10.1007/978-3-662-03329-6
[49] Sakai, Makoto, On basic domains of extremal functions, K\=odai Math. Sem. Rep., 24, 251\textendash 258 pp. (1972) · Zbl 0249.30009
[50] Sakai, Makoto, Analytic functions with finite Dirichlet integrals on Riemann surfaces, Acta Math., 142, 3-4, 199\textendash 220 pp. (1979) · Zbl 0406.30036 · doi:10.1007/BF02395061
[51] Sakai, Makoto, The sub-mean-value property of subharmonic functions and its application to the estimation of the Gaussian curvature of the span metric, Hiroshima Math. J., 9, 3, 555\textendash 593 pp. (1979) · Zbl 0424.31002
[52] Sakai, Makoto, Quadrature domains, Lecture Notes in Mathematics 934, i+133 pp. (1982), Springer-Verlag, Berlin-New York · Zbl 1198.31001
[53] Sakai, Makoto, A moment problem on Jordan domains, Proc. Amer. Math. Soc., 70, 1, 35\textendash 38 pp. (1978) · Zbl 0394.30027
[54] Sakai, Makoto, Applications of variational inequalities to the existence theorem on quadrature domains, Trans. Amer. Math. Soc., 276, 1, 267\textendash 279 pp. (1983) · Zbl 0515.31001 · doi:10.2307/1999431
[55] Sakai, Makoto, Null quadrature domains, J. Anal. Math., 40, 144\textendash 154 (1982) pp. (1981) · Zbl 0483.30002 · doi:10.1007/BF02790159
[56] Sakai, Makoto, Domains having null complex moments, Complex Var. Theory Appl., 7, 4, 313\textendash 319 pp. (1987) · Zbl 0555.30022
[57] Sakai, Makoto, Regularity of a boundary having a Schwarz function, Acta Math., 166, 3-4, 263\textendash 297 pp. (1991) · Zbl 0728.30007 · doi:10.1007/BF02398888
[58] Sakai, Makoto, Small modifications of quadrature domains, Mem. Amer. Math. Soc., 206, 969, vi+269 pp. (2010) · Zbl 1198.31001 · doi:10.1090/S0065-9266-10-00596-X
[59] Shapiro, Harold S., The Schwarz function and its generalization to higher dimensions, University of Arkansas Lecture Notes in the Mathematical Sciences, 9, xiv+108 pp. (1992), John Wiley & Sons, Inc., New York · Zbl 0784.30036
[60] Sheil-Small, T., Complex polynomials, Cambridge Studies in Advanced Mathematics 75, xx+428 pp. (2002), Cambridge University Press, Cambridge · Zbl 1012.30001 · doi:10.1017/CBO9780511543074
[61] Wiegmann, P.; Zabrodin, A., Large scale correlations in normal non-Hermitian matrix ensembles, J. Phys. A, 36, 12, 3411\textendash 3424 pp. (2003) · Zbl 1039.65034 · doi:10.1088/0305-4470/36/12/332
[62] Wiegmann, Paul B., Aharonov-Bohm effect in the quantum Hall regime and Laplacian growth problems. Statistical field theories, Como, 2001, NATO Sci. Ser. II Math. Phys. Chem. 73, 337\textendash 349 pp. (2002), Kluwer Acad. Publ., Dordrecht
[63] Wilson, George, Hilbert’s sixteenth problem, Topology, 17, 1, 53\textendash 73 pp. (1978) · Zbl 0394.57001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.