×

Mass, center of mass and isoperimetry in asymptotically flat 3-manifolds. (English) Zbl 1534.53046

The asymptotically flat manifolds considered in the article are 3-dimensional Riemannian manifolds whose geometry approaches the Euclidean geometry at infinity. Provided a suitable decay rate is fulfilled, they admit global asymptotic invariants, most importantly the ADM mass and the center of mass, originally defined from the Hamiltonian formulation of general relativity.
In recent years, a large number of different techniques have been introduced to define or to recover these quantities.
The authors of the present work investigate a technique based on the isoperimetric deficit of surfaces that enclose large volumes in the asymptotic region. This notion was introduced by G. Huisken in a contribution contained in [P. Chruściel (ed.) et al., Oberwolfach Rep. 3, No. 1, 87–88 (2006; Zbl 1109.83300)]. Here G. Huisken proved that this deficit converges to the ADM mass as the radii of the coordinate spheres go to infinity.
The authors of the present paper first recover the same limit using other isoperimetric deficits that involve the enclosed volume, the area and the total mean curvature of the surfaces. They also get the existence of a stable foliation of the asymptotic region by surfaces that satisfy some curvature conditions (involving the mean and the Gaussian curvatures).
Then, they extend these results to the class of asymptotically flat 3-manifolds with a non-compact boundary, for which the Euclidean half-space is the model space. In this setting, large spheres are replaced by large hemispheres and the various definitions (mass, center of mass, isoperimetric deficits) are revisited accordingly. The foliation constructed here is made of stable isoperimetric surfaces, thus extending the corresponding result obtained by M. Eichmair and J. Metzger [Invent. Math. 194, No. 3, 591–630 (2013; Zbl 1297.49078)] for asymptotically flat manifolds.

MSC:

53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
53C12 Foliations (differential geometric aspects)
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)

References:

[1] Schoen, R., Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differ. Geom., 20, 2, 479-495 (1984) · Zbl 0576.53028 · doi:10.4310/jdg/1214439291
[2] Lee, JM; Parker, T., The Yamabe problem, Bull. AMS, 17, 1, 37-91 (1987) · Zbl 0633.53062 · doi:10.1090/S0273-0979-1987-15514-5
[3] Brendle, S.; Marques, F., Recent progress on the Yamabe problem, Adv. Lect. Math., 20, 29-47 (2011) · Zbl 1268.53046
[4] Huisken, G.; Ilmanen, T., The inverse mean curvature flow and the Riemannian Penrose inequality, J. Differ. Geom., 59, 3, 353-437 (2001) · Zbl 1055.53052 · doi:10.4310/jdg/1090349447
[5] Huisken, G.; Yau, S-T, Definition of center of mass for isolated physical systems and unique foliations by stable spheres with constant mean curvature, Invent. Math., 124, 1-3, 281-311 (1996) · Zbl 0858.53071 · doi:10.1007/s002220050054
[6] Ye, R.: Foliation by constant mean curvature spheres on asymptotically flat manifolds. In: Geometric Analysis and the Calculus of Variations (1996) · Zbl 0932.53026
[7] Metzger, J., Foliations of asymptotically flat 3-manifolds by 2-surfaces of prescribed mean curvature, J. Differ. Geom., 77, 2, 201-236 (2007) · Zbl 1140.53013 · doi:10.4310/jdg/1191860394
[8] Huang, L-H, On the center of mass of isolated systems with general asymptotics, Class. Quantum Gravity, 26, 1 (2008) · Zbl 1157.83011 · doi:10.1088/0264-9381/26/1/015012
[9] Huang, L-H, Foliations by stable spheres with constant mean curvature for isolated systems with general asymptotics, Commun. Math. Phys., 300, 2, 331-373 (2010) · Zbl 1206.53028 · doi:10.1007/s00220-010-1100-1
[10] Nerz, C., Foliations by spheres with constant expansion for isolated systems without asymptotic symmetry, J. Differ. Geom., 109, 2, 257-289 (2018) · Zbl 1420.53031 · doi:10.4310/jdg/1527040873
[11] Eichmair, M.; Metzger, J., Large isoperimetric surfaces in initial data sets, J. Differ. Geom., 94, 1, 159-186 (2013) · Zbl 1269.53071 · doi:10.4310/jdg/1361889064
[12] Regge, T.; Teitelboim, C., Role of surface integrals in the Hamiltonian formulation of general relativity, Ann. Phys., 88, 1, 286-318 (1974) · Zbl 0328.70016 · doi:10.1016/0003-4916(74)90404-7
[13] Beig, R.; Ó Murchadha, N., The Poincaré group as the symmetry group of canonical general relativity, Ann. Phys., 174, 2, 463-498 (1987) · Zbl 0617.70021 · doi:10.1016/0003-4916(87)90037-6
[14] Almaraz, S., Convergence of scalar-flat metrics on manifolds with boundary under a Yamabe-type flow, J. Differ. Equ., 259, 7, 2626-2694 (2015) · Zbl 1320.53078 · doi:10.1016/j.jde.2015.04.011
[15] Almaraz, S.; de Queiroz, OS; Wang, S., A compactness theorem for scalar-flat metrics on 3-manifolds with boundary, J. Funct. Anal., 277, 7, 2092-2116 (2019) · Zbl 1420.53047 · doi:10.1016/j.jfa.2019.01.001
[16] Almaraz, S.; Barbosa, E.; de Lima, LL, A positive mass theorem for asymptotically flat manifolds with a non-compact boundary, Commun. Anal. Geom., 24, 4, 673-715 (2016) · Zbl 1360.53035 · doi:10.4310/CAG.2016.v24.n4.a1
[17] Almaraz, S., de Lima, L.L., Mari, L.: Spacetime positive mass theorems for initial data sets with noncompact boundary. In: International Mathematics Research Notices (2020) · Zbl 1470.83025
[18] de Lima, LL; Girão, F.; Montalbán, A., The mass in terms of Einstein and Newton, Class. Quantum Gravity, 36, 7 (2019) · Zbl 1476.83030 · doi:10.1088/1361-6382/ab090a
[19] Huisken, G., An isoperimetric concept for mass and quasilocal mass, Oberwolfach Rep, 3, 1, 87-88 (2006)
[20] Huang, L.-H.: Center of mass and constant mean curvature foliations for isolated systems. MSRI Lecture Notes (2009)
[21] Schneider, R.: Convex bodies: the Brunn-Minkowski theory. In: Encyclopedia of Mathematics and its Applications, vol. 151. Cambridge University Press (2014) · Zbl 1287.52001
[22] Guan, P.; Li, J., The quermassintegral inequalities for \(k\)-convex starshaped domains, Adv. Math., 221, 5, 1725-1732 (2009) · Zbl 1170.53058 · doi:10.1016/j.aim.2009.03.005
[23] Chang, S-YA; Wang, Y., On Aleksandrov-Fenchel inequalities for k-convex domains, Milan J. Math., 79, 1, 13-38 (2011) · Zbl 1229.52002 · doi:10.1007/s00032-011-0159-2
[24] Fall, MM, Area-minimizing regions with small volume in Riemannian manifolds with boundary, Pac. J. Math., 244, 2, 235-260 (2009) · Zbl 1186.53010 · doi:10.2140/pjm.2010.244.235
[25] Montenegro, J.F.: Foliation by free boundary constant mean curvature leaves. arXiv:1904.11867 (2019)
[26] Eichmair, M.; Metzger, J., Unique isoperimetric foliations of asymptotically flat manifolds in all dimensions, Invent. Math., 194, 3, 591-630 (2013) · Zbl 1297.49078 · doi:10.1007/s00222-013-0452-5
[27] Munoz Flores, AE; Nardulli, S., The isoperimetric problem of a complete Riemannian manifold with a finite number of asymptotically Schwarzschild ends, Commun. Anal. Geom., 28, 7, 1577-1601 (2020) · Zbl 1456.53030 · doi:10.4310/CAG.2020.v28.n7.a3
[28] Nerz, C., Foliations by stable spheres with constant mean curvature for isolated systems without asymptotic symmetry, Calc. Var. Partial Differ. Equ., 54, 2, 1911-1946 (2015) · Zbl 1331.53042 · doi:10.1007/s00526-015-0849-7
[29] Chodosh, O.; Eichmair, M.; Shi, Y.; Yu, H., Isoperimetry, scalar curvature, and mass in asymptotically flat Riemannian 3-manifolds, Commun. Pure Appl. Math., 74, 4, 865-905 (2021) · Zbl 1470.53036 · doi:10.1002/cpa.21981
[30] Jauregui, JL; Lee, DA, Lower semicontinuity of mass under \({C}^0\) convergence and Huisken’s isoperimetric mass, Journal für die reine und angewandte Mathematik, 2019, 756, 227-257 (2019) · Zbl 1430.53052 · doi:10.1515/crelle-2017-0007
[31] Cederbaum, C.; Sakovich, A., On center of mass and foliations by constant spacetime mean curvature surfaces for isolated systems in general relativity, Calc. Var. Partial Differ. Equ., 60, 6, 1-57 (2021) · Zbl 1483.53086 · doi:10.1007/s00526-021-02060-z
[32] Chen, P-N; Wang, M-T; Yau, S-T, Quasilocal angular momentum and center of mass in general relativity, Adv. Theor. Math. Phys., 20, 671-682 (2016) · Zbl 1355.83004 · doi:10.4310/ATMP.2016.v20.n4.a1
[33] Gray, A., Tubes. Progress in Mathematics (2012), Basel: Birkhäuser, Basel
[34] Arnowitt, R., Deser, S., Misner, C.W.: The dynamics of general relativity. In: Gravitation: An Introduction to Current Research (1962) · Zbl 1152.83320
[35] Christodoulou, D., Mathematical Problems of General Relativity I (2008), Helsinki: European Mathematical Society, Helsinki · Zbl 1136.83001 · doi:10.4171/005
[36] Harlow, D.; Wu, J., Covariant phase space with boundaries, J. High Energy Phys., 2020, 10, 1-52 (2020) · Zbl 1461.83007 · doi:10.1007/JHEP10(2020)146
[37] de Lima, L.L.: Conserved quantities in general relativity: the case of initial data sets with a non-compact boundary. To appear in “Perspectives in Scalar Curvature”, edited by M. Gromov and H.B. Lawson (2022)
[38] Schoen, R.; Yau, S-T, On the proof of the positive mass conjecture in general relativity, Commun. Math. Phys., 65, 1, 45-76 (1979) · Zbl 0405.53045 · doi:10.1007/BF01940959
[39] Fan, X-Q; Shi, Y.; Tam, L-F, Large-sphere and small-sphere limits of the Brown-York mass, Comm. Anal. Geom., 17, 2, 37-72 (2009) · Zbl 1175.53083 · doi:10.4310/CAG.2009.v17.n1.a3
[40] Lee, DA; LeFloch, PG, The positive mass theorem for manifolds with distributional curvature, Commun. Math. Phys., 339, 1, 99-120 (2015) · Zbl 1330.53062 · doi:10.1007/s00220-015-2414-9
[41] Michel, B., Geometric invariance of mass-like asymptotic invariants, J. Math. Phys., 52, 5 (2011) · Zbl 1317.83030 · doi:10.1063/1.3579137
[42] Chan, P-Y; Tam, L-F, A note on center of mass, Commun. Anal. Geom., 24, 3, 471-486 (2016) · Zbl 1345.53072 · doi:10.4310/CAG.2016.v24.n3.a2
[43] Cederbaum, C.; Nerz, C., Explicit Riemannian manifolds with unexpectedly behaving center of mass, Ann. Henri Poincaré, 16, 7, 1609-1631 (2015) · Zbl 1319.83009 · doi:10.1007/s00023-014-0346-0
[44] Qing, J.; Tian, G., On the uniqueness of the foliation of spheres of constant mean curvature in asymptotically flat 3-manifolds, J. Am. Math. Soc., 20, 4, 1091-1110 (2007) · Zbl 1142.53024 · doi:10.1090/S0894-0347-07-00560-7
[45] Corvino, J.; Wu, H., On the center of mass of isolated systems, Class. Quantum Gravity, 25, 8 (2008) · Zbl 1140.83322 · doi:10.1088/0264-9381/25/8/085008
[46] de Lima, LL; Lázaro, IC, A Cauchy-Crofton formula and monotonicity inequalities for the Barbosa-Colares functionals, Asian J. Math., 7, 1, 81-89 (2003) · Zbl 1080.53071 · doi:10.4310/AJM.2003.v7.n1.a5
[47] Reilly, RC, Applications of the Hessian operator in a Riemannian manifold, Indiana Univ. Math. J., 26, 3, 459-472 (1977) · Zbl 0391.53019 · doi:10.1512/iumj.1977.26.26036
[48] Máximo, D.; Nunes, I.; Smith, G., Free boundary minimal annuli in convex three-manifolds, J. Differ. Geom., 106, 1, 139-186 (2017) · Zbl 1386.53071 · doi:10.4310/jdg/1493172096
[49] Bray, H.L.: The Penrose inequality in general relativity and volume comparison theorems involving scalar curvature. Ph.D. Thesis, Stanford University (1997)
[50] Corvino, J.; Gerek, A.; Greenberg, M.; Krummel, B., On isoperimetric surfaces in general relativity, Pac. J. Math., 231, 1, 63-84 (2007) · Zbl 1154.53048 · doi:10.2140/pjm.2007.231.63
[51] Ritoré, M.; Rosales, C., Existence and characterization of regions minimizing perimeter under a volume constraint inside Euclidean cones, Trans. Am. Math. Soc., 356, 11, 4601-4622 (2004) · Zbl 1057.53023 · doi:10.1090/S0002-9947-04-03537-8
[52] Almaraz, S.; de Lima, LL, The mass of an asymptotically hyperbolic manifold with a non-compact boundary, Ann. Henri Poincaré, 21, 11, 3727-3756 (2020) · Zbl 1457.53023 · doi:10.1007/s00023-020-00954-w
[53] Rigger, R., The foliation of asymptotically hyperbolic manifolds by surfaces of constant mean curvature (including the evolution equations and estimates), Manuscr. Math., 113, 4, 403-421 (2004) · Zbl 1065.53029 · doi:10.1007/s00229-004-0439-z
[54] Neves, A.; Tian, G., Existence and uniqueness of constant mean curvature foliation of asymptotically hyperbolic 3-manifolds, Geom. Funct. Anal., 19, 3, 910 (2009) · Zbl 1187.53027 · doi:10.1007/s00039-009-0019-1
[55] Neves, A.; Tian, G., Existence and uniqueness of constant mean curvature foliation of asymptotically hyperbolic 3-manifolds II, J. für die reine und angewandte Mathematik, 2010, 641, 69-93 (2010) · Zbl 1194.53026 · doi:10.1515/crelle.2010.028
[56] Mazzeo, R.; Pacard, F., Constant curvature foliations in asymptotically hyperbolic spaces, Revista Matematica Iberoamericana, 27, 1, 303-333 (2011) · Zbl 1214.53024 · doi:10.4171/RMI/637
[57] Chodosh, O., Large isoperimetric regions in asymptotically hyperbolic manifolds, Commun. Math. Phys., 343, 2, 393-443 (2016) · Zbl 1344.53048 · doi:10.1007/s00220-015-2457-y
[58] Ros, A.; Vergasta, E., Stability for hypersurfaces of constant mean curvature with free boundary, Geom. Dedicata., 56, 1, 19-33 (1995) · Zbl 0912.53009 · doi:10.1007/BF01263611
[59] Ros, A.; Souam, R., On stability of capillary surfaces in a ball, Pac. J. Math., 178, 2, 345-361 (1997) · Zbl 0930.53007 · doi:10.2140/pjm.1997.178.345
[60] Barbosa, JLM; Colares, AG, Stability of hypersurfaces with constant \(r\)-mean curvature, Ann. Glob. Anal. Geom., 15, 3, 277-297 (1997) · Zbl 0891.53044 · doi:10.1023/A:1006514303828
[61] Rosenberg, H., Hypersurfaces of constant curvature in space forms, Bulletin des Sciences Mathématiques, 117, 2, 211-239 (1993) · Zbl 0787.53046
[62] Alías, LJ; Brasil, A.; Colares, AG, Integral formulae for spacelike hypersurfaces in conformally stationary spacetimes and applications, Proc. Edinb. Math. Soc., 46, 2, 465-488 (2003) · Zbl 1053.53038 · doi:10.1017/S0013091502000500
[63] Chai, X.: Two quasi-local masses evaluated on surfaces with boundary. arXiv preprint arXiv:1811.06168 (2018)
[64] Ambrozio, LC, Rigidity of area-minimizing free boundary surfaces in mean convex three-manifolds, J. Geom. Anal., 25, 2, 1001-1017 (2015) · Zbl 1322.53058 · doi:10.1007/s12220-013-9453-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.