×

A super-Gaussian Poisson-Boltzmann model for electrostatic free energy calculation: smooth dielectric distribution for protein cavities and in both water and vacuum states. (English) Zbl 1418.92042

Summary: Calculations of electrostatic potential and solvation free energy of macromolecules are essential for understanding the mechanism of many biological processes. In the classical implicit solvent Poisson-Boltzmann (PB) model, the macromolecule and water are modeled as two-dielectric media with a sharp border. However, the dielectric property of interior cavities and ion-channels is difficult to model realistically in a two-dielectric setting. In fact, the detection of water molecules in a protein cavity remains to be an experimental challenge. This introduces an uncertainty, which affects the subsequent solvation free energy calculation. In order to compensate this uncertainty, a novel super-Gaussian dielectric PB model is introduced in this work, which devices an inhomogeneous dielectric distribution to represent the compactness of atoms and characterizes empty cavities via a gap dielectric value. Moreover, the minimal molecular surface level set function is adopted so that the dielectric profile remains to be smooth when the protein is transferred from water phase to vacuum. An important feature of this new model is that as the order of super-Gaussian function approaches the infinity, the dielectric distribution reduces to a piecewise constant of the two-dielectric model. Mathematically, an effective dielectric constant analysis is introduced in this work to benchmark the dielectric model and select optimal parameter values. Computationally, a pseudo-time alternative direction implicit (ADI) algorithm is utilized for solving the super-Gaussian PB equation, which is found to be unconditionally stable in a smooth dielectric setting. Solvation free energy calculation of a Kirkwood sphere and various proteins is carried out to validate the super-Gaussian model and ADI algorithm. One macromolecule with both water filled and empty cavities is employed to demonstrate how the cavity uncertainty in protein structure can be bypassed through dielectric modeling in biomolecular electrostatic analysis.

MSC:

92C40 Biochemistry, molecular biology
35Q92 PDEs in connection with biology, chemistry and other natural sciences
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Abrashkin A, Andelman D, Orland H (2007) Dipoloar Poisson-Boltzmann equation: ions and dipoles close to charge interface. Phys Rev Lett 99:077801 · doi:10.1103/PhysRevLett.99.077801
[2] Alexov EG, Gunner MR (1997) Incorporating protein conformational flexibility into the calculation of pH-dependent protein properties. Biophys J 72:2075-2093 · doi:10.1016/S0006-3495(97)78851-9
[3] Alexov EG, Gunner MR (1999) Calculated protein and proton motions coupled to electron transfer: electron transfer from QA- to QB in bacterial photosynthetic reaction centers. Biochemistry 38:8253-8270 · doi:10.1021/bi982700a
[4] Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci 98:10037-10041 · doi:10.1073/pnas.181342398
[5] Bates P, Wei GW, Zhao S (2008) Minimal molecular surfaces and their applications. J Comput Chem 29:380-391 · doi:10.1002/jcc.20796
[6] Bates PW, Chen Z, Sun YH, Wei GW, Zhao S (2009) Geometric and potential driving formation and evolution of biomolecular surfaces. J Math Biol 59:193-231 · Zbl 1311.92212 · doi:10.1007/s00285-008-0226-7
[7] Blinn JF (1982) A generalization of algegraic surface drawing. ACM Trans Graph 1:235-256 · doi:10.1145/357306.357310
[8] Bohinc K, Bossa GV, May S (2017) Incorporation of ion and solvent structure into mean-field modeling of the electric double layer. Adv Colloid Interface Sci 249:220-233 · doi:10.1016/j.cis.2017.05.001
[9] Chakravorty A, Jia Z, Li L, Zhao S, Alexov E (2018a) Reproducing the ensemble average polar solvation energy of a protein from a single structure: Gaussian-based smooth dielectric function for macromolecular modeling. J Chem Theory Comput 14:1020-1032 · doi:10.1021/acs.jctc.7b00756
[10] Chakravorty A, Jia Z, Peng Y, Tajielyato N, Wang L, Alexov E (2018b) Gaussian-based smooth dielectric function: a surface-free approach for modeling macromolecular binding in solvents. Front Mol Biosci 5:25 · doi:10.3389/fmolb.2018.00025
[11] Che J, Dzubiella J, Li B, McCammon JA (2008) Electrostatic free energy and its variations in implicit solvent models. J Phys Chem B 112:3058-3069 · doi:10.1021/jp7101012
[12] Chen M, Lu B (2011) TMSmesh: a robust method for molecular surface mesh generation using a trace technique. J Chem Theory Comput 7:203-212 · doi:10.1021/ct100376g
[13] Chen DA, Chen Z, Chen CJ, Geng WH, Wei GW (2011) Software news and update MIBPB: a software package for electrostatic analysis. J Comput Chem 32:756-770 · doi:10.1002/jcc.21646
[14] Cheng L-T, Dzubiella J, McCammon JA, Li B (2007) Application of the level-set method to the solvation of nonpolar molecules. J Chem Phys 127:084503 · doi:10.1063/1.2757169
[15] Connolly ML (1983) Analytical molecular surface calculation. J Appl Crystallogr 16:548-558 · doi:10.1107/S0021889883010985
[16] Dai S, Li B, Liu J (2018) Convergence of phase-field free energy and boundary force for molecular solvation. Arch Ration Mech Anal 227:105-147 · Zbl 1384.35052 · doi:10.1007/s00205-017-1158-4
[17] Deng W, Xu J, Zhao S (2018) On developing stable finite element methods for pseudo-time simulation of biomolecular electrostatics. J Comput Appl Math 330:456-474 · Zbl 1383.78036 · doi:10.1016/j.cam.2017.09.004
[18] Duncan BS, Olson AJ (1993) Shape analysis of molecular surfaces. Biopolymers 33:231-238 · doi:10.1002/bip.360330205
[19] Geng WH, Zhao S (2013) Fully implicit ADI schemes for solving the nonlinear Poisson-Boltzmann equation. Mol Math Biophys 1:109-123 · Zbl 1276.65063
[20] Geng W, Zhao S (2017) A two-component matched interface and boundary (MIB) regularization for charge singularity in implicit solvation. J Comput Phys 351:25-39 · Zbl 1375.78008 · doi:10.1016/j.jcp.2017.09.026
[21] Giard J, Macq B (2010) Molecular surface mesh generation by filtering electron density map. Int J Biomed Imaging 2010:923780
[22] Grant JA, Pickup B (1995) A Gaussian description of molecular shape. J Phys Chem 99:3503-3510 · doi:10.1021/j100011a016
[23] Grant JA, Pickup BT, Nicholls A (2001) A smooth permittivity function for Poisson-Boltzmann solvation methods. J Comput Chem 22:608-640 · doi:10.1002/jcc.1032
[24] Hage KE, Hedin F, Gupta PK, Meuwly M, Karplus M (2018) Valid molecular dynamics simulations of human hemoglobin require a surprisingly large box size. eLife 7:e35560 · doi:10.7554/eLife.35560
[25] Hammel M (2012) Validation of macromolecular flexibility in solution by small-angle X-ray scattering (SAXS). Eur Biophys J 41:789-799 · doi:10.1007/s00249-012-0820-x
[26] Hu L, Wei GW (2012) Nonlinear Poisson equation for heterogeneous media. Biophys J 103:758-766 · doi:10.1016/j.bpj.2012.07.006
[27] Huggins DJ (2015) Quantifying the entropy of binding for water molecules in protein cavities by computing correlations. Biophys J 108:928-936 · doi:10.1016/j.bpj.2014.12.035
[28] Im W, Beglov D, Roux B (1998) Continuum solvation model: computation of electrostatic forces from numerical solutions to the Poisson-Boltzmann equation. Comput Phys Commun 111:59-75 · Zbl 0935.78019 · doi:10.1016/S0010-4655(98)00016-2
[29] Jia Z, Li L, Chakravorty A, Alexov E (2017) Treating ion distribution with Gaussian-based smooth dielectric function in DelPhi. J Comput Chem 38:1974-1979 · doi:10.1002/jcc.24831
[30] Koehl P, Orland H, Delarue M (2009) Beyond the Poisson-Boltzmann model: modeling biomolecular-water and water-water interactions. Phys Rev Lett 102:087801 · doi:10.1103/PhysRevLett.102.087801
[31] Kokkinidis M, Glykos NM, Fadouloqlou VE (2012) Protein flexibility and enzymatic catalysis. Adv Protein Chem Struct Biol 87:181-218 · doi:10.1016/B978-0-12-398312-1.00007-X
[32] Lee B, Richards FM (1973) Interpretation of protein structure: estimation of static accessibility. J Mol Biol 55:379-400 · doi:10.1016/0022-2836(71)90324-X
[33] Li C, Li L, Zhang J, Alexov E (2012) Highly efficient and exact method for parallelization of gridbased algorithms and its implementation in DelPhi. J Comput Chem 33:1960-1966 · doi:10.1002/jcc.23033
[34] Li C, Li L, Petukh M, Alexov E (2013a) Progress in developing Poisson-Boltzmann equation solvers. Mol Based Math Biol 1:42-62 · Zbl 1277.65086 · doi:10.2478/mlbmb-2013-0002
[35] Li L, Li C, Zhang Z, Alexov E (2013b) On the dielectric “constant” of proteins: smooth dielectric function for macromolecular modeling and its implementation in DelPhi. J Chem Theory Comput 9:2126-2136 · doi:10.1021/ct400065j
[36] Li L, Li C, Alexov E (2014) On the modeling of polar component of solvation energy using smooth Gaussian-based dielectric function. J Theory Comput Chem 13:1440002 · doi:10.1142/S0219633614400021
[37] Li L, Wang L, Alexov E (2015) On the energy components governing molecular recognition in the framework of continuum approaches. Front Mol Biosci 2:5 · doi:10.3389/fmolb.2015.00005
[38] Lu BZ, Zhou YC, Holst MJ, McCammon JA (2008) Recent progress in numerical methods for the Poisson-Boltzmann equation in biophysical applications. Commun Comput Phys 3:973-1009 · Zbl 1186.92005
[39] Mengistu DH, Bohing K, May S (2009) Poisson-Boltzmann model in a solvent of interacting Langevin dipoles. EPL (Europhys Lett) 88:14003 · doi:10.1209/0295-5075/88/14003
[40] Ng J, Vora T, Krishnamurthy V, Chung S-H (2008) Estimating the dielectric constant of the channel protein and pore. Eur Biophys J 37:213-222 · doi:10.1007/s00249-007-0218-3
[41] Nymeyer H, Zhou HX (2008) A method to determine dielectric constants in nonhomogeneous systems, application to biological membranes. Biophys J 94:1185-1193 · doi:10.1529/biophysj.107.117770
[42] Pang X, Zhou HX (2013) Poisson-Boltzmann calculations: van der Waals or molecular surface? Commun Comput Phys 13:1-12 · doi:10.4208/cicp.270711.140911s
[43] Qiao ZH, Li ZL, Tang T (2006) A finite difference scheme for solving the nonlinear Poisson-Boltzmann equation modeling charged spheres. J Comput Math 24:252-264 · Zbl 1105.78015
[44] Quillin ML, Wingfield PT, Matthews BW (2006) Determination of solvent content in cavities in IL-\[1\beta\] β using experimentally phased electron density. Proc Natl Acad Sci 103:19749-19753 · doi:10.1073/pnas.0609442104
[45] Richards FM (1977) Areas, volumes, packing and protein structure. Annu Rev Biophys Bioeng 6:151-176 · doi:10.1146/annurev.bb.06.060177.001055
[46] Sanner M, Olson A, Spehner J (1996) Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38:305-320 · doi:10.1002/(SICI)1097-0282(199603)38:3<305::AID-BIP4>3.0.CO;2-Y
[47] Simonson T, Perahia D (1995) Internal interfacial dielectric properties of cytochrome c from molecular dynamics in aqueous solution. Proc Natl Acad Sci 92:1082-1086 · doi:10.1073/pnas.92.4.1082
[48] Song X (2002) An inhomogeneous model of protein dielectric properties: intrinsic polarizabilities of amino acids. J Chem Phys 116:9359 · doi:10.1063/1.1474582
[49] Takano K, Yamagata Y, Yutani K (2003) Buried water molecules contribute to the conformational stability of a protein. Protein Eng 16:5-9 · doi:10.1093/proeng/gzg001
[50] Tian W, Zhao S (2014) A fast ADI algorithm for geometric flow equations in biomolecular surface generation. Int J Numer Method Biomed Eng 30:490-516 · doi:10.1002/cnm.2613
[51] Voges D, Karshikoff A (1998) A model of a local dielectric constant in proteins. J Chem Phys 108:2219 · doi:10.1063/1.475602
[52] Wang L, Li L, Alexov E (2015a) pKa predictions for proteins RNAs and DNAs with the Gaussian dielectric function using DelPhiPKa. Proteins Struct Funct Bioinform 83:2186-2197 · doi:10.1002/prot.24935
[53] Wang L, Zhang M, Alexov E (2015b) DelPhiPKa Web Server: predicting pKa of proteins RNAs and DNAs. Bioinformatics 32:614-615 · doi:10.1093/bioinformatics/btv607
[54] Warshel A, Russell ST (1984) Calculations of electrostatic interactions in biological systems and in solutions. Q Rev Biophys 17:283-422 · doi:10.1017/S0033583500005333
[55] Warshel A, Sharma PK, Kato M, Parson WW (2006) Modeling electrostatic effects in proteins. Biochim Biophys Acta 1764:1647-1676 · doi:10.1016/j.bbapap.2006.08.007
[56] Wilson L, Zhao S (2016) Unconditionally stable time splitting methods for the electrostatic analysis of solvated biomolecules. Int J Numer Anal Modell 13:852-878 · Zbl 1355.92038
[57] Yu Z, Holst MJ, Cheng Y, McCammon JA (2008) Feature-preserving adaptive mesh generation for molecular shape modeling and simulation. J Mol Graph Modell 26:1370-1380 · doi:10.1016/j.jmgm.2008.01.007
[58] Zhang Y, Xu G, Bajaj C (2006) Quality meshing of implicit solvation models of biomolecular structures. Comput Aided Geom Des 23:510-530 · Zbl 1098.92034 · doi:10.1016/j.cagd.2006.01.008
[59] Zhao S (2011) Pseudo-time-coupled nonlinear models for biomolecular surface representation and solvation analysis. Int J Numer Method Biomed Eng 27:1964-1981 · Zbl 1241.92007 · doi:10.1002/cnm.1450
[60] Zhao S (2014) Operator splitting ADI schemes for pseudo-time coupled nonlinear solvation simulations. J Comput Phys 257:1000-1021 · Zbl 1349.78105 · doi:10.1016/j.jcp.2013.09.043
[61] Zhao Y, Kwan YY, Che J, Li B, McCammon JA (2013) Phase-field approach to implicit solvation of biomolecules with Coulomb-field approximation. J Chem Phys 139:024111 · doi:10.1063/1.4812839
[62] Zhou YC, Zhao S, Feig M, Wei GW (2006) High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources. J Comput Phys 213:1-30 · Zbl 1089.65117 · doi:10.1016/j.jcp.2005.07.022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.