×

Pseudo-time-coupled nonlinear models for biomolecular surface representation and solvation analysis. (English) Zbl 1241.92007

Summary: This paper presents an improved mathematical model for biomolecular surface representation and solvation analysis. Based on the Eulerian formulation, the polar and nonpolar contributions to the solvation process can be equally accounted for via a unified free energy functional. Using variational analysis, two nonlinear partial differential equations, that is, a Poisson-Boltzmann (PB) type equation for the electrostatic potential and a geometric flow type equation defining the solute-solvent interface, can be derived. To achieve a more efficient and stable coupling, we propose a time-dependent PB equation by introducing a pseudo-time. The system of nonlinear partial differential equations can then be coupled via the standard time integration. Furthermore, the numerical treatment of nonlinear terms becomes easier in the present model. Based on a hypersurface function, the biomolecular surface is represented as a smooth interface. However, for the nonlinear PB equation, such a smooth interface may cause unphysical blowup because of the existence of nonvanishing values within the solute domain. A filtering process is proposed to circumvent this problem. An example solvation analysis of various compounds and proteins was carried out to validate the proposed model. The contributions of electrostatic interactions to the protein-protein binding affinity are studied for selected protein complexes.

MSC:

92C05 Biophysics
35Q92 PDEs in connection with biology, chemistry and other natural sciences
35A15 Variational methods applied to PDEs
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
Full Text: DOI

References:

[1] Sharp, Electrostatic interactions in macromolecules: theory and applications, Annual Review Biophysics and Biophysical Chemistry 19 pp 301– (1990) · doi:10.1146/annurev.bb.19.060190.001505
[2] Ponder, Force fields for protein simulations, Advances in Protein Chemistry 66 pp 27– (2003) · doi:10.1016/S0065-3233(03)66002-X
[3] Roux, Implicit solvent models, Biophysical Chemistry 78 pp 1– (1999) · doi:10.1016/S0301-4622(98)00226-9
[4] Baker, Improving implicit solvent simulations: a Poisson-centric view, Current Opinion in Structural Biology 15 pp 137– (2005) · doi:10.1016/j.sbi.2005.02.001
[5] Dong, Computational methods for biomolecular electrostatics, Methods in Cell Biology 84 pp 843– (2008) · doi:10.1016/S0091-679X(07)84026-X
[6] Feig, Recent advances in the development and application of implicit solvent models in biomolecule simulations, Current Opinion in Structural Biology 14 pp 217– (2004) · doi:10.1016/j.sbi.2004.03.009
[7] Feig, Performance comparison of generalized born and Poisson methods in the calculation of electrostatic solvation energies for protein structures, Journal of Computational Chemistry 25 pp 265– (2004) · doi:10.1002/jcc.10378
[8] Davis, Electrostatics and diffusion of molecules in solution: simulations with the University of Houston Brownian dynamics program, Computer Physics Communications 62 pp 187– (1991) · doi:10.1016/0010-4655(91)90094-2
[9] Lee, The interpretation of protein structures: estimation of static accessibility, Journal of Molecular Biology 55 pp 379– (1973) · doi:10.1016/0022-2836(71)90324-X
[10] Connolly, Analytical molecular surface calculation, Journal of Applied Crystallography 16 pp 548– (1983) · doi:10.1107/S0021889883010985
[11] Richards, Areas, volumes, packing and protein structure, Annual Review of Biophysics and Bioengineering 6 pp 151– (1977) · doi:10.1146/annurev.bb.06.060177.001055
[12] Dong, Electrostatic contribution to the binding stability of protein-protein complexes, Proteins 65 pp 87– (2006) · doi:10.1002/prot.21070
[13] Dong, Comparison of calculation and experiment implicates significant electrostatic contributions to the binding stability of barnase and barstar, Biophysical Journal 85 pp 49– (2003) · doi:10.1016/S0006-3495(03)74453-1
[14] Grant, A smooth permittivity function for Poisson-Boltzmann solvation methods, Journal of Computational Chemistry 22 pp 608– (2001) · doi:10.1002/jcc.1032
[15] Im, Continuum solvation model: computation of electrostatic forces from numerical solutions to the Poisson-Boltzmann equation, Computer Physics Communications 111 pp 59– (1998) · Zbl 0935.78019 · doi:10.1016/S0010-4655(98)00016-2
[16] Connolly, Molecular surface triangulation, Journal of Applied Crystallography 18 pp 499– (1985) · doi:10.1107/S0021889885010779
[17] Sanner, Reduced surface: an efficient way to compute molecular surfaces, Biopolymers 38 pp 305– (1996) · doi:10.1002/(SICI)1097-0282(199603)38:3<305::AID-BIP4>3.0.CO;2-Y
[18] Swanson, Revisiting free energy calculations: a theoretical connection to MM/PBSA and direct calculation of the association free energy, Biophysical Journal 86 pp 67– (2004) · doi:10.1016/S0006-3495(04)74084-9
[19] Wei GW Sun YH Zhou YC Feig M Molecular multiresolution surfaces arXiv:math-ph 2005
[20] Xu, Discrete surface modelling using partial differential equations, Computer Aided Geometric Design 23 pp 125– (2006) · Zbl 1083.65018 · doi:10.1016/j.cagd.2005.05.004
[21] Zhang, Quality meshing of implicit solvation models of biomolecular structures, Computer Aided Geometric Design 23 pp 510– (2006) · Zbl 1098.92034 · doi:10.1016/j.cagd.2006.01.008
[22] Bates PW Wei GW Zhao S The minimal molecular surface arXiv:q-bio/0610038v1 2006
[23] Bates, Minimal molecular surfaces and their applications, Journal of Computational Chemistry 29 pp 380– (2008) · doi:10.1002/jcc.20796
[24] Bates, Geometric and potential driving formation and evolution of biomolecular surfaces, Journal of Mathematical Biology 59 pp 193– (2009) · Zbl 1311.92212 · doi:10.1007/s00285-008-0226-7
[25] Wei, Differential geometry based multiscale models, Bulletin of Mathematical Biology 72 pp 1562– (2010) · Zbl 1198.92001 · doi:10.1007/s11538-010-9511-x
[26] Chen, Differential geometry based solvation model I: Eulerian formation, Journal of Computational Physics 229 pp 8231– (2010) · Zbl 1229.92030 · doi:10.1016/j.jcp.2010.06.036
[27] Chen, Differential geometry based solvation model II: Lagrangian formation, accepted, Journal of Mathematical Biology (2011) · Zbl 1284.92025 · doi:10.1007/s00285-011-0402-z
[28] Sharp, Calculating total electrostatic energies with the nonlinear Poisson-Boltzmann equation, Journal of Physical Chemistry 94 pp 7684– (1990) · doi:10.1021/j100382a068
[29] Gilson, Computation of electrostatic forces on solvated molecules using the Poisson-Boltzmann equation, Journal of Physical Chemistry 97 pp 3591– (1993) · doi:10.1021/j100116a025
[30] Wagoner, Assessing implicit models for nonpolar mean solvation forces: the importance of dispersion and volume terms, Proceedings of the National Academy of Sciences of the USA 103 pp 8331– (2006) · doi:10.1073/pnas.0600118103
[31] Zhao, High order matched interface and boundary methods for the Helmholtz equation in media with arbitrarily curved interfaces, Journal of Computional Physics 229 pp 3155– (2010) · Zbl 1187.78044 · doi:10.1016/j.jcp.2009.12.034
[32] Zhou, High order matched interface and boundary (MIB) schemes for elliptic equations with discontinuous coefficients and singular sources, Journal of Computional Physics 213 pp 1– (2006) · Zbl 1089.65117 · doi:10.1016/j.jcp.2005.07.022
[33] Weeks, Role of repulsive forces in determining the equilibrium structure of simple liquids, Journal of Chemical Physics 54 pp 5237– (1971) · doi:10.1063/1.1674820
[34] Holst MJ The Poisson-Boltzmann equation: analysis and multilevel numerical solution PhD thesis 1993
[35] Nicholls, Predicting small-molecule solvation free energies: An informal blind test for computational chemistry, Journal of Medicinal Chemistry 51 pp 769– (2008) · doi:10.1021/jm070549+
[36] Geng, Treatment of charge singularities in implicit solvent models, Journal of Chemical Physics 127 pp 114– (2007) · doi:10.1063/1.2768064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.