×

Sub-Riemannian geodesics on \(\mathrm{SL}(2, \mathbb{R} )\). (English) Zbl 1510.53032

Summary: We explicitly describe the length minimizing geodesics for a sub-Riemannian structure of elliptic type defined on \(SL (2, \mathbb{R} )\). Our method uses a symmetry reduction which translates the problem into a Riemannian problem on a two dimensional quotient space, on which projections of geodesics can be easily visualized. As a byproduct, we obtain an alternative derivation of the characterization of the cut-locus. We use classification results for three dimensional right invariant sub-Riemannian structures on Lie groups to identify exactly automorphic structures on which our results apply.

MSC:

53C17 Sub-Riemannian geometry
53C22 Geodesics in global differential geometry
57S20 Noncompact Lie groups of transformations
22E15 General properties and structure of real Lie groups

References:

[1] A. Agrachev and D. Barilari, Sub-Riemannian structures on 3D Lie groups. J. Dyn. Control Syst. 18 (2012) 21-44. · Zbl 1244.53039 · doi:10.1007/s10883-012-9133-8
[2] A. Agrachev, D. Barilari and U. Boscain, A Comprehensive Introduction to sub-Riemannian Geometry. Cambridge University Press (2019).
[3] A. Agrachev and Y. Sachkov, Control Theory from the Geometric Viewpoint. Encyclopaedia of Mathematical Sciences, 87. Springer-Verlag Berlin-Heidelberg (2004). · Zbl 1062.93001
[4] F. Albertini and D. D’Alessandro, Time optimal simultaneous control of two level quantum systems. Automatica 74 (2016) 55-62. · Zbl 1348.81258 · doi:10.1016/j.automatica.2016.07.014
[5] F. Albertini and D. D’Alessandro, On symmetries in time optimal control, sub-Riemannian geometries and the K — P problem. J. Dyn. Control Syst. 24 (2018) 13-38. · Zbl 1387.93059 · doi:10.1007/s10883-016-9351-6
[6] U. Boscain and F. Rossi, Invariant Carnot-Caratheodory metric on S^3, SO(3) and SL(2) and Lens Spaces. SIAM J. Control Optim. 47 (2008) 1851-1878. · Zbl 1170.53016
[7] V.N. Berestovskii and I.A. Zubareva, Sub-Riemannian distance in the Lie groups SU(2) and SO(3), Siberian Adv. Math. 26 (2016) 77-89. · Zbl 1374.53058
[8] V.N. Berestovskii and I.A. Zubareva, Sub-Riemannian distance on the Lie group SL(2). Sibirsk. Mat. Zh 58 (2017) 16-27. · Zbl 1369.53022
[9] I. Beschastnyi, Y. Sachkov, Geodesics in the sub-Riemannian problem on the group SO(3). Sb. Math. 207 (2016) 915-941. · Zbl 1457.53015
[10] R. Biggs, Isometries of Riemannian and sub-Riemannian structures on three-dimensional Lie groups. Commun. Math. 25 (2017) 99-135. · Zbl 1395.53034 · doi:10.1515/cm-2017-0010
[11] F. Baudoin and G. Cho, The subelliptic heat kernel of the octonionic anti-de Sitter fibration. Symmetry Integrability Geom. Methods Appi. 17 (2021). · Zbl 1464.58010
[12] F. Baudoin and G. Cho, The subelliptic heat kernel of the octonionic Hopf fibration. Potential Anal. 55 (2021) 211-228. · Zbl 1481.58012
[13] G.E. Bredon, Introduction to Compact Transformation Groups. Academic Press, New York, London (1972) · Zbl 0246.57017
[14] D.-C. Chang, I. Markina and A. Vasil’ev, Sub-Lorentzian geometry on anti-de Sitter space. J. Math. Pures Appi. 90 (2008) 82-110. · Zbl 1151.53025
[15] D. D’Alessandro and B. Sheller, On K-P sub-Riemannian problems and their cut locus, in Proceedings European Control Conference (2019).
[16] S.G. Dani, Actions of automorphism groups of Lie groups. Handbook of group actions. Vol. IV, 529-562, Adv. Lect. Math. (ALM), 41, Int. Press, Somerville, MA (2018). · Zbl 1414.22017
[17] J. Dieudonné, On the automorphisms of the classical groups. With a supplement by Loo-Keng Hua. Mem. Amer. Math. Soc. 2 (1951), vi+122 pp. · Zbl 0042.25603
[18] M.P. Do Carmo, Riemannian Geometry, Mathematics: Theory and Applications, Birkhäuser Boston (1992). · Zbl 0752.53001
[19] M. Grochowski, Connections on bundles of horizontal frames associated with contact sub-pseudo-Riemannian manifolds. J. Geom. Phys. 146 (2019) 103518. · Zbl 1427.53039 · doi:10.1016/j.geomphys.2019.103518
[20] M. Grochowski and W. Krynéski, Invariants of contact sub-pseudo-Riemannian structures and Einstein-Weyl geometry. in Variational Methods in Imaging and Geometric Control, Radon Ser. Comput. Appl. Math., 18, De Gruyter, Berlin (2017) 434-453. · Zbl 1407.53029
[21] K.Y. Ha and J.B. Lee, Left invariant metrics and curvatures on simply connected three-dimensional Lie groups. Math. Nachr. 282 (2009) 868-898. · Zbl 1172.22006
[22] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press, New York (1978). · Zbl 0451.53038
[23] A.P. Mashtakov and Y.L. Sachkov, Integrability of left-invariant sub-Riemannian structures on the special linear group SL_2(R). Differ. Equ. 50 (2014) 1541-1547. · Zbl 1319.49077 · doi:10.1134/S0012266114110111
[24] R. Montgomery, A Tour of sub-Riemannian Geometry, their Geodesics and Applications. Mathematical Surveys and Monographs, Vol. 91, American Mathematical Society (2002). · Zbl 1044.53022
[25] B. Sheller, Symmetry Reduction in K — P Problems, Ph.D. Thesis, Department of Mathematics, Iowa State University (2019).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.