×

Some quasilinear elliptic equations involving multiple \(p\)-Laplacians. (English) Zbl 1417.35048

The authors establish existence results of bounded positive and radially symmetric weak solutions, with locally Hölderian gradient, to the quasilinear elliptic problem \[ \begin{cases} -\Delta_p u-\beta \Delta_q u=g(u),&\text{ in }\mathbb{R}^N,\\ u(x)\rightarrow 0 &\text{ as }|x|\rightarrow +\infty, \end{cases} \] where \(N\geq 3\), \(p\in (1,N)\), \(q\in (p,+\infty)\), \(\beta \in (0,+\infty)\) and \(g:\mathbb{R}\rightarrow \mathbb{R}\) is a continuous function which is identically zero in \((-\infty,0)\) and satisfies
(a) \(\sup_{\zeta\in (0,+\infty)}\int_0^\zeta g(s)ds>0\),
(b) \(\limsup_{s\rightarrow +\infty}\frac{g(s)}{s^{q^*-1}}\leq 0\),
(c) either \(\limsup_{s\rightarrow0^+}\frac{g(s)}{s^{l-1}}\leq 0\), for all \(l\in [p,p^*]\),
or \(-\infty<\liminf_{s\rightarrow0^+}\frac{g(s)}{s^{l-1}}\leq \limsup_{s\rightarrow0^+}\frac{g(s)}{s^{l-1}}<0\), for some \(l\in [p,p^*)\),
where \(p^*=\frac{pN}{N-p}\), \(q^*=\frac{qN}{N-q}\), if \(q<N\), and \(q^*\in (\max\{q,p^*\},+\infty)\), if \(q\geq N\).

The proof is based on the Mountain Pass Theorem and on the well-known Jeanjean’s monotonicity trick. Under the same assumptions, the authors show that there exists a radially symmetric solution which minimizes the associated energy functional over the set of all radially symmetric solutions.
Using similar techniques, the authors also extend the above results to the \(k\)-order approximation of the Born-Infeld equation \[ -\operatorname{div}\Biggl(\frac{\nabla u}{\sqrt{1-b^{-2}|\nabla u|^2}}\Biggr)=g(u), \text{ in }\mathbb{R}^N. \]

MSC:

35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35J35 Variational methods for higher-order elliptic equations
35Q60 PDEs in connection with optics and electromagnetic theory

References:

[1] A.AZZOLLINI,\(Ground state solution for a problem with mean curvature operator in Minkowski \(\) space\), J. Funct. Anal. 266 (2014), no. 4, 2086-2095. http://dx.doi.org/10.1016/j.jfa.2013.10.002.MR3150152 · Zbl 1305.35082
[2] ,\(On a prescribed mean curvature equation in Lorentz-Minkowski space\), J. Math. Pures Appl. (9) 106 (2016), no. 6, 1122-1140 (English, with English and French summaries). http://dx.doi.org/10.1016/j.matpur.2016.04.003.MR3565417 · Zbl 1355.35083
[3] A.AZZOLLINI, P.D’AVENIA, and A.POMPONIO,\(Quasilinear elliptic equations inR Nvia\) variational methods and Orlicz-Sobolev embeddings\), Calc. Var. Partial Differential Equations 49 (2014), no. 1-2, 197-213.http://dx.doi.org/10.1007/s00526-012-0578-0.MR3148112 · Zbl 1285.35039
[4] A.AZZOLLINIand A.POMPONIO,\(On a ``zero mass'' nonlinear Schr¨odinger equation\), Adv. Nonlinear Stud. 7 (2007), no. 4, 599-627. http://dx.doi.org/10.1515/ans-2007-0406.MR \(2359527 Some Quasilinear Elliptic Equations Involving Multiple \[p\]-Laplacians 2223\) · Zbl 1132.35472
[5] ,\(Compactness results and applications to some ``zero mass'' elliptic problems\), Nonlinear Anal. 69(2008), no. 10, 3559-3576. http://dx.doi.org/10.1016/j.na.2007.09.041.MR2450560 · Zbl 1159.35022
[6] ,\(Ground state solutions for the nonlinear Schr¨odinger-Maxwell equations\), J. Math. Anal. Appl. 345 (2008), no. 1, 90-108. http://dx.doi.org/10.1016/j.jmaa.2008.03.057.MR2422637 · Zbl 1147.35091
[7] ,\(On the Schr¨odinger equation inR Nunder the effect of a general nonlinear term\), Indiana Univ. Math. J. 58 (2009), no. 3, 1361-1378. http://dx.doi.org/10.1512/iumj.2009.58.3576.MR2542090 · Zbl 1170.35038
[8] M.BADIALE, L.PISANI, and S.ROLANDO,\(Sum of weighted Lebesgue spaces and nonlinear \(\) elliptic equations\), NoDEA Nonlinear Differential Equations Appl. 18 (2011), no. 4, 369-405. http://dx.doi.org/10.1007/s00030-011-0100-y.MR2825301 · Zbl 1234.35102
[9] R.BARTOLO, A. M.CANDELA, and A.SALVATORE,\(On a class of superlinear \[(p, q)\]- Laplacian type equations on \(RN\), J. Math. Anal. Appl. 438 (2016), no. 1, 29-41. http://dx.doi.org/10.1016/j.jmaa.2016.01.049.MR3462564 · Zbl 1334.35039
[10] V.BENCIand A. M.MICHELETTI,\(Solutions in exterior domains of null mass nonlinear field \(\) equations\), Adv. Nonlinear Stud. 6 (2006), no. 2, 171-198. http://dx.doi.org/10.1515/ans-2006-0204.MR2219834 · Zbl 1114.35143
[11] H.BERESTYCKIand P. L.LIONS,\(Nonlinear scalar field equations I: Existence of a ground state\), Arch. Rational Mech. Anal. 82 (1983), no. 4, 313-345. http://dx.doi.org/10.1007/BF00250555.MR695535 · Zbl 0533.35029
[12] D.BONHEURE, P.D’AVENIA, and A.POMPONIO,\(On the electrostatic Born-Infeld \(\) equation with extended charges\), Comm. Math. Phys. 346 (2016), no. 3, 877-906. http://dx.doi.org/10.1007/s00220-016-2586-y.MR3537339 · Zbl 1365.35170
[13] D.BONHEURE, C.DECOSTER, and A.DERLET,\(Infinitely many radial solutions of a mean \(\) curvature equation in Lorentz-Minkowski space\), Rend. Istit. Mat. Univ. Trieste 44 (2012), 259– 284.MR3019562 · Zbl 1268.35068
[14] H.BREZIS,\(Functional Analysis\): \(Sobolev Spaces and Partial Differential Equations\), Universitext, Springer, New York, 2011.http://dx.doi.org/10.1007/978-0-387-70914-7.MR2759829 · Zbl 1220.46002
[15] H.CARLEYand M. K. H.KIESSLING,\(Constructing graphs over \(R\) n \(\) with small pre-\(\) scribed mean-curvature\), Math. Phys. Anal. Geom. 18 (2015), no. 1, Art. 11, 25. http://dx.doi.org/10.1007/s11040-015-9177-6.MR3336354 · Zbl 1338.35168
[16] M. F.CHAVES, G.ERCOLE, and O. H.MIYAGAKI,\(Existence of a nontrivial solution for the \[(p, q)\]-Laplacian inR N\) without the Ambrosetti-Rabinowitz condition\), Nonlinear Anal. 114 (2015), 133-141.http://dx.doi.org/10.1016/j.na.2014.11.010.MR3300789 · Zbl 1308.35114
[17] M.DEGIOVANNI, Al.MUSESTI, and M.SQUASSINA,\(On the regularity of solutions in the \(\) Pucci-Serrin identity\), Calc. Var. Partial Differential Equations 18 (2003), no. 3, 317-334. http://dx.doi.org/10.1007/s00526-003-0208-y.MR2018671 · Zbl 1046.35039
[18] J. M.DOO and E. S. M´EDEIROS,\(Remarks on least energy solutions for quasilinear elliptic prob- lems inRN\), Electron. J. Differential Equations 83 (2003), 14.MR1995609 · Zbl 1109.35318
[19] A.FERREROand F.GAZZOLA,\(On subcriticality assumptions for the existence of ground \(\) states of quasilinear elliptic equations\), Adv. Differential Equations 8 (2003), no. 9, 1081– 1106.MR1989290 · Zbl 1290.35096
[20] G. M.FIGUEIREDO,\(Existence of positive solutions for a class ofp&\) q \(\) elliptic prob-\(\) lems with critical growth on \(RN\), J. Math. Anal. Appl. 378 (2011), no. 2, 507-518. http://dx.doi.org/10.1016/j.jmaa.2011.02.017.MR2773261 · Zbl 1211.35114
[21] D.FORTUNATO, L.ORSINA, and L.PISANI,\(Born-Infeld type equations for electrostatic fields\), J. Math. Phys. 43 (2002), no. 11, 5698-5706. http://dx.doi.org/10.1063/1.1508433.MR1936545 · Zbl 1060.78004
[22] B.FRANCHI, E.LANCONELLI, and J.SERRIN,\(Existence and uniqueness of nonnega-\(\) tive solutions of quasilinear equations in \(R\) n\), Adv. Math. 118 (1996), no. 2, 177-243. http://dx.doi.org/10.1006/aima.1996.0021.MR1378680 2224ALESSIOPOMPONIO \(&\) TATSUYAWATANABE · Zbl 0853.35035
[23] C.HEand G.LI,\(The regularity of weak solutions to nonlinear scalar field elliptic equations con-\(\) taining \(\) p \(&\) q \(\)-Laplacians\), Ann. Acad. Sci. Fenn. Math. 33 (2008), no. 2, 337-371.MR2431370 · Zbl 1159.35023
[24] J.HIRATA, N.IKOMA, and K.TANAKA,\(Nonlinear scalar field equations inR N:Mountain pass\) and symmetric mountain pass approaches\), Topol. Methods Nonlinear Anal. 35 (2010), no. 2, 253– 276.MR2676816 · Zbl 1203.35106
[25] L.JEANJEAN,\(On the existence of bounded Palais-Smale sequences and application to a Landesman- Lazer-type problem set onRN\), Proc. Roy. Soc. Edinburgh Sect. A 129 (1999), no. 4, 787-809. http://dx.doi.org/10.1017/S0308210500013147.MR1718530 · Zbl 0935.35044
[26] M.MARIS¸,\(On the symmetry of minimizers\), Arch. Ration. Mech. Anal. 192 (2009), no. 2, 311– 330.http://dx.doi.org/10.1007/s00205-008-0136-2.MR2486598 · Zbl 1159.49005
[27] D.MUGNAIand N. S.PAPAGEORGIOU,\(Wang’s multiplicity result for superlinear \[(p, q)\]-\) \(equations without the Ambrosetti-Rabinowitz condition\), Trans. Amer. Math. Soc. 366 (2014), no. 9, 4919-4937.http://dx.doi.org/10.1090/S0002-9947-2013-06124-7.MR3217704 · Zbl 1300.35017
[28] B.PELLACCIand M.SQUASSINA,\(Mountain Pass solutions for quasi-linear equations via a mono-\(\) tonicity trick\), J. Math. Anal. Appl. 381 (2011), no. 2, 857-865. http://dx.doi.org/10.1016/j.jmaa.2011.04.014.MR2802120 · Zbl 1221.35166
[29] J. A.SANTOSand S. H. M.SOARES,\(Radial solutions of quasilinear equations in \(\) Orlicz-Sobolev type spaces\), J. Math. Anal. Appl. 428 (2015), no. 2, 1035-1053. http://dx.doi.org/10.1016/j.jmaa.2015.03.030.MR3334963 · Zbl 1318.35042
[30] J.SERRINand H.ZOU,\(Symmetry of ground states of quasilinear elliptic equations\), Arch. Ration. Mech. Anal. 148 (1999), no. 4, 265-290. http://dx.doi.org/10.1007/s002050050162.MR1716665 · Zbl 0940.35079
[31] W. A.STRAUSS,\(Existence of solitary waves in higher dimensions\), Comm. Math. Phys. 55 (1977), no. 2, 149-162.http://dx.doi.org/10.1007/BF01626517.MR0454365 · Zbl 0356.35028
[32] J.SU, Z. Q.WANG, and M.WILLEM,\(Weighted Sobolev embedding with unbounded \(\) and decaying radial potentials\), J. Differential Equations 238 (2007), no. 1, 201-219. http://dx.doi.org/10.1016/j.jde.2007.03.018.MR2334597 · Zbl 1220.35026
[33] G.TALENTI,\(Best constant in Sobolev inequality\), Ann. Mat. Pura Appl. (4) 110 (1976), no. 1, 353-372.http://dx.doi.org/10.1007/BF02418013.MR0463908 · Zbl 0353.46018
[34] N. S.TRUDINGER,\(On Harnack type inequalities and their application to quasilinear elliptic equa-\(\) tions\), Comm. Pure Appl. Math. 20 (1967), no. 4, 721-747. http://dx.doi.org/10.1002 · Zbl 0153.42703
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.