×

Sum of weighted Lebesgue spaces and nonlinear elliptic equations. (English) Zbl 1234.35102

The authors consider the existence and multiplicity of solutions of nonlinear \(p\)-Laplacian equations of the form \[ -\Delta _p u + V(| x | ) | u | ^{p-2}u =f(| x | ,u ) \quad \mathrm{in}\,\,\, {\mathbb R}^N \tag{1} \] where \(1<p<N\) and \(\Delta _p= \mathrm{div}\, (| \nabla u | ^{p-2} \nabla u ) \). Assume that \(V: (0,+\infty )\to [0,+\infty )\) and \(f: (0,+\infty ) \times {\mathbb R} \to [0,+\infty )\) are, respectively, a measurable and a Carathéodory function, both nonnegative. Define \[ W^{1,p}({\mathbb R}^N ,V):= \left\{ u \in D^{1,p}({\mathbb R}^N); \int _{{\mathbb R}^N} V(| x | ) | u | ^p dx< + \infty \right\}. \] Denoting \(F(x,t):= \int _0^t f(x,s)ds\) and \(p^*:=pN/(N-p)\), they impose the following hypotheses. {(V) \(V\in L^1((a,b))\) for some open bounded interval with \(b>a>0\).
(f) There exists \(\gamma >p\) such that for almost every \(r>0\) and all \(t\geq 0\), one has \[ 0\leq \gamma F(r,t)\leq f(x,t) t \leq M \max \{r^{\theta _1},r^{\theta _2}\}\min \{t^{q_1},t^{q_2}\} \] for some constant \(M>0\) and \(\theta _1,\theta _2,q_1,q_2 \in {\mathbb R} \) such that \[ p<q_1<p^* + \frac{\theta _1p}{N-p}\leq p^* + \frac{\theta _2p}{N-p}<q_2. \] Note that the condition (f) means the double-power growth condition. } The authors prove the following two theorems.
Theorem 1.1 Assume that (V) and (f) hold. If there exists \(t_*>0\) such that \(F(r,t)>0\) for almost every \(r>0\) and all \(t\geq t_*\), then (1) has a nontrivial nonnegative radial weak solution.
Theorem 1.2 Assume that (V) and (f) hold. If for almost every \(r>0\) and all \(t\geq 0\) one has \(f(r,t) = -f(r,-t)\) and \[ F(r,t)\geq m \max \{r ^{\theta _1},r^{\theta _2}\} \min \{t^{q_1},t^{q_2}\} \] for some constant \(m>0\), then (1) has infinitely many radial weak solutions.
Here \(u \in W^{1,p}({\mathbb R}^N, V)\) is a weak solution of (1) if and only if \[ \int _{{\mathbb R}^N}(| \nabla u | ^{p-2} \nabla u \cdot \nabla h + V(| x | )| u | ^{p-2}uh )dx = \int _{{\mathbb R}} f(| x | ,u )h dx \] for all \(h \in W ^{1,p}({\mathbb R}^N,V)\).

MSC:

35J62 Quasilinear elliptic equations
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
35D30 Weak solutions to PDEs
Full Text: DOI

References:

[1] Ambrosetti A., Felli V., Malchiodi A.: Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity. J. Eur. Math. Soc. 7, 117-144 (2005) · Zbl 1064.35175 · doi:10.4171/JEMS/24
[2] Ambrosetti A., Rabinowitz P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349-381 (1973) · Zbl 0273.49063 · doi:10.1016/0022-1236(73)90051-7
[3] Ambrosetti A., Wang Z.Q.: Nonlinear Schrödinger equations with vanishing and decaying potentials. Differ. Int. Equ. 18, 1321-1332 (2005) · Zbl 1210.35087
[4] Azzollini A.: A multiplicity result for a semilinear Maxwell type equation. Topol. Methods Nonlinear Anal. 31, 83-110 (2008) · Zbl 1159.35013
[5] Azzollini, A., Pisani, L., Pomponio, A.: Improved estimates and a limit case for the electrostatic Klein-Gordon-Maxwell system. Proc. R. Soc. Edinb. (2010, in press) · Zbl 1231.35244
[6] Azzollini A., Pomponio A.: On a “zero mass” nonlinear Schrödinger equation. Adv. Nonlinear Stud. 7, 599-627 (2007) · Zbl 1132.35472
[7] Azzollini A., Pomponio A.: Compactness results and applications to some “zero mass” elliptic problems. Nonlinear Anal. 69, 3559-3576 (2008) · Zbl 1159.35022 · doi:10.1016/j.na.2007.09.041
[8] Badiale M., Benci V., Rolando S.: A nonlinear elliptic equation with singular potential and applications to nonlinear field equations. J. Eur. Math. Soc. 9, 355-381 (2007) · Zbl 1149.35033 · doi:10.4171/JEMS/83
[9] Badiale M., Benci V., Rolando S.: Three dimensional vortices in the nonlinear wave equation. Bollettino U.M.I. serie IX 2, 105-134 (2009) · Zbl 1178.35263
[10] Badiale M., Guida M., Rolando S.: Elliptic equations with decaying cylindrical potentials and power-type nonlinearities. Adv. Differ. Equ. 12, 1321-1362 (2007) · Zbl 1158.35032
[11] Badiale M., Rolando S.: Elliptic problems with singular potentials and double-power nonlinearity. Mediterr. J. Math. 2, 417-436 (2005) · Zbl 1121.35050 · doi:10.1007/s00009-005-0055-5
[12] Badiale M., Rolando S.: A note on nonlinear elliptic problems with singular potentials. Rend. Lincei Mat. Appl. 16, 1-13 (2006) · Zbl 1126.35021
[13] Badiale M., Rolando S.: Nonlinear elliptic equations with subhomogeneous potentials. Nonlinear Anal. 72, 602-617 (2010) · Zbl 1183.35135 · doi:10.1016/j.na.2009.06.111
[14] Benci V., Fortunato D.: A strongly degenerate elliptic equation arising from the semilinear Maxwell equations. C. R. Acad. Sci. Paris série I 339, 839-842 (2004) · Zbl 1116.35319
[15] Benci V., Fortunato D.: Towards a unified field theory for classical electrodynamics. Arch. Ration. Mech. Anal. 173, 379-414 (2004) · Zbl 1065.78004 · doi:10.1007/s00205-004-0324-7
[16] Benci V., Grisanti C.R., Micheletti A.M.: Existence and non existence of the ground state solution for the nonlinear Schrödinger equation with V(∞) = 0. Topol. Methods Nonlinear Anal. 26, 203-220 (2005) · Zbl 1105.35112
[17] Benci, V., Grisanti, C.R., Micheletti, A.M.: Existence of solutions for the nonlinear Schrödinger equation with V(∞ ) = 0. In: Progress in Nonlinear Differential Equations and Their Applications, vol. 66. Birkhäuser (2005) · Zbl 1105.35112
[18] Benci V., Micheletti A.M.: Solutions in exterior domains of null mass nonlinear field equations. Adv. Nonlinear Stud. 6, 171-198 (2006) · Zbl 1114.35143
[19] Berestycki H., Lions P.L.: Nonlinear scalar field equations, I—existence of a ground state. Arch. Ration. Mech. Anal. 82, 313-345 (1983) · Zbl 0533.35029
[20] Berestycki H., Lions P.L.: Existence d’états multiples dans des équations de champs scalaires non linéaires dans le cas de masse nulle. C. R. Acad. Sci. Paris série I 297, 267-270 (1983) · Zbl 0542.35072
[21] Bonheure D., Van Schaftingen J.: Bound states solutions for a class of nonlinear Schrödinger equations. Rev. Mat. Iberoamericana 24, 297-351 (2008) · Zbl 1156.35084
[22] Brezis H., Dupaigne L., Tesei A.: On a semilinear elliptic equation with inverse-square potential. Selecta Math. New Series 11, 1-7 (2005) · Zbl 1161.35383 · doi:10.1007/s00029-005-0003-z
[23] Byeon J., Wang Z.Q.: Standing waves with a critical frequency for nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 165, 295-316 (2002) · Zbl 1022.35064 · doi:10.1007/s00205-002-0225-6
[24] Byeon J., Wang Z.Q.: Standing waves with a critical frequency for nonlinear Schrödinger equations. II. Calc. Var. Partial Differ. Equ. 18, 207-219 (2003) · Zbl 1073.35199 · doi:10.1007/s00526-002-0191-8
[25] Byeon J., Wang Z.Q.: Spherical semiclassical states of a critical frequency for Schrödinger equations with decaying potentials. J. Eur. Math. Soc. 8, 217-228 (2006) · Zbl 1245.35036 · doi:10.4171/JEMS/48
[26] Conti M., Crotti S., Pardo D.: On the existence of positive solutions for a class of singular elliptic equations. Adv. Differ. Equ. 3, 111-132 (1998) · Zbl 0944.35024 · doi:10.1080/10236199708808110
[27] Drewnowski L., Orlicz W.: A note on modular spaces. XI. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 16, 877-882 (1968) · Zbl 0174.43905
[28] Ghimenti M., Micheletti A.M.: Solutions for a nonhomogeneous nonlinear Schroedinger equation with double-power nonlinearity. Differ. Int. Equ. 10, 1131-1152 (2007) · Zbl 1212.35114
[29] Krasnosel’skii, M.A., Rutickii, Y.B.: Convex Functions and Orlicz Spaces. P. Noordhoff Ltd, Groningen (1961) · Zbl 1212.35114
[30] Maligranda, L.: Orlicz spaces and interpolation. In: Seminars in Mathematics, vol. 5. Univ. Estadual de Campinas, Campinas (1989) · Zbl 0874.46022
[31] Musina R.: Existence and multiplicity results for a weighted p-Laplace equation involving Hardy potentials and critical nonlinearities. Rend. Lincei Mat. Appl. 20, 1-17 (2009) · Zbl 1168.49039 · doi:10.1007/s12210-009-0001-8
[32] Palais R.S.: The principle of symmetric criticality. Commun. Math. Phys. 69, 19-30 (1979) · Zbl 0417.58007 · doi:10.1007/BF01941322
[33] Pisani, L.: Remarks on the sum of Lebesgue spaces. Unpublished note (2004) · Zbl 1149.35033
[34] Rao M.M., Ren Z.D.: Theory of Orlicz Spaces. Marcel Dekker, New York (1991) · Zbl 0724.46032
[35] Rolando, S.: Nonlinear elliptic equations with singular symmetric potentials. PhD Thesis, Dipartimento di Matematica, Università degli Studi di Torino (2006). http://www2.dm.unito.it/paginepersonali/rolando · Zbl 1210.35087
[36] Struwe M.: Variational Methods. Springer-Verlag, Berlin-Heidelberg (1990) · Zbl 0746.49010
[37] Su J., Wang Z.Q., Willem M.: Weighted Sobolev embedding with unbounded and decaying radial potentials. J. Differ. Equ. 238, 201-219 (2007) · Zbl 1220.35026 · doi:10.1016/j.jde.2007.03.018
[38] Vainberg M.M.: Variational Methods for the Study of Nonlinear Operators. Holden-Day, San Francisco (1964) · Zbl 0122.35501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.