×

Parameterization method for unstable manifolds of standing waves on the line. (English) Zbl 1473.74075

Summary: We consider a linearly unstable standing wave solution of a parabolic partial differential equation (PDE) on the real line and develop a high order method for polynomial approximation of the local unstable manifold. The unstable manifold describes the breakdown of the nonlinear wave after the loss of stability. Our method is based on the parameterization method for invariant manifolds and studies an invariance equation describing a local chart map. This invariance equation is a PDE posed on the product of a disk and the line. The dimension of the disk is equal to the Morse index of the wave. We develop a formal series solution for the invariance equation, and show that the coefficients of the series solve certain boundary value problems (BVPs) on the line. We solve these BVPs numerically to any desired order. The result is a polynomial describing the dynamics of the PDE in a macroscopic neighborhood of the unstable standing wave. The method is implemented for a number of example problems. Truncation/numerical errors are quantified via a posteriori indicators.

MSC:

74J30 Nonlinear waves in solid mechanics
74H10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of dynamical problems in solid mechanics
74H55 Stability of dynamical problems in solid mechanics
Full Text: DOI

References:

[1] E. J. Doedel, T. F. Fairgrieve, B. Sandstede, A. R. Champneys, Y. A. Kuznetsov, and X. Wang, Auto-07p: Continuation and Bifurcation Software for Ordinary Differential Equations, Technical report, 2007.
[2] B. Deconinck, F. Kiyak, J. D. Carter, and J. N. Kutz, SpectrUW: A laboratory for the numerical exploration of spectra of linear operators, Math. Comput. Simulation, 74 (2007), pp. 370-378. · Zbl 1113.65058
[3] T. Rees and A. Monahan, A general numerical method for analyzing the linear stability of stratified parallel shear flows, J. Atmos. Ocean. Technol., 31 (2014), pp. 2795-2808.
[4] P. Brodtkorb, P. Johannesson, G. Lindgren, I. Rychlik, J. Ryden, and E. Sjo, WAFO - A MATLAB toolbox for analysis of random waves and loads, Proceedings of the Tenth International Offshore and Polar Engineering Conference, International Socidety of Offshore and Polar Engineers, Cupertino, CA, 3 (2000), pp. 343-350.
[5] B. Barker, J. Humpherys, J. Lytle, and K. Zumbrun, STABLAB: A MATLAB-based Numerical Library for Evans Function Computation, https://github.com/nonlinear-waves/stablab.git.
[6] X. Cabré, E. Fontich, and R. de la Llave, The parameterization method for invariant manifolds. I. Manifolds associated to non-resonant subspaces, Indiana Univ. Math. J., 52 (2003), pp. 283-328. · Zbl 1034.37016
[7] X. Cabré, E. Fontich, and R. de la Llave, The parameterization method for invariant manifolds. II. Regularity with respect to parameters, Indiana Univ. Math. J., 52 (2003), pp. 329-360. · Zbl 1034.37017
[8] X. Cabré, E. Fontich, and R. de la Llave, The parameterization method for invariant manifolds. III. Overview and applications, J. Differential Equations, 218 (2005), pp. 444-515. · Zbl 1101.37019
[9] A. Haro and R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Explorations and mechanisms for the breakdown of hyperbolicity, SIAM J. Appl. Dyn. Syst., 6 (2007), pp. 142-207. · Zbl 1210.37062
[10] À. Haro and R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Numerical algorithms, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), pp. 1261-1300. · Zbl 1296.37048
[11] A. Haro and R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Rigorous results, J. Differential Equations, 228 (2006), pp. 530-579. · Zbl 1102.37017
[12] M. Canadell and À. Haro, Computation of quasi-periodic normally hyperbolic invariant tori: Algorithms, numerical explorations and mechanisms of breakdown, J. Nonlinear Sci., 27 (2017), pp. 1829-1868. · Zbl 1457.37080
[13] M. Canadell and À. Haro, Parameterization method for computing quasi-periodic reducible normally hyperbolic invariant tori, in Advances in Differential Equations and Applications, SEMA SIMAI Springer Ser. 4, Springer, Cham, Switzerland, 2014, pp. 85-94. · Zbl 1360.37151
[14] R. C. Calleja, A. Celletti, and R. de la Llave, A KAM theory for conformally symplectic systems: Efficient algorithms and their validation, J. Differential Equations, 255 (2013), pp. 978-1049. · Zbl 1345.37078
[15] G. Huguet, R. de la Llave, and Y. Sire, Computation of whiskered invariant tori and their associated manifolds: New fast algorithms, Discrete Contin. Dyn. Syst., 32 (2012), pp. 1309-1353. · Zbl 1279.70004
[16] E. Fontich, R. de la Llave, and Y. Sire, A method for the study of whiskered quasi-periodic and almost-periodic solutions in finite and infinite dimensional Hamiltonian systems, Electron. Res. Announc. Math. Sci., 16 (2009), pp. 9-22. · Zbl 1237.37040
[17] X. He and R. de la Llave, Construction of quasi-periodic solutions of state-dependent delay differential equations by the parameterization method I: Finitely differentiable, hyperbolic case, J. Dynam. Differential Equations, 29 (2017), pp. 1503-1517. · Zbl 1384.34080
[18] X. He and R. de la Llave, Construction of quasi-periodic solutions of state-dependent delay differential equations by the parameterization method II: Analytic case, J. Differential Equations, 261 (2016), pp. 2068-2108. · Zbl 1407.34094
[19] A. Guillamon and G. Huguet, A computational and geometric approach to phase resetting curves and surfaces, SIAM J. Appl. Dyn. Syst., 8 (2009), pp. 1005-1042. · Zbl 1216.34030
[20] G. Huguet and R. de la Llave, Computation of limit cycles and their isochrons: Fast algorithms and their convergence, SIAM J. Appl. Dyn. Syst., 12 (2013), pp. 1763-1802. · Zbl 1291.37108
[21] J. Rinzel and G. Huguet, Nonlinear dynamics of neuronal excitability, oscillations, and coincidence detection, Comm. Pure Appl. Math., 66 (2013), pp. 1464-1494. · Zbl 1402.92111
[22] R. Castelli, J.-P. Lessard, and J. D. Mireles James, Parameterization of invariant manifolds for periodic orbits I: Efficient numerics via the Floquet normal form, SIAM J. Appl. Dyn. Syst., 14 (2015), pp. 132-167. · Zbl 1376.37057
[23] J. D. Mireles James and M. Murray, Chebyshev-Taylor parameterization of stable/unstable manifolds for periodic orbits: Implementation and applications, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 27 (2017), 1730050. · Zbl 1382.34053
[24] À. Haro, M. Canadell, J.-L. Figueras, A. Luque, and J.-M. Mondelo, The Parameterization Method for Invariant Manifolds, Applied Mathematical Sciences 195, Springer, Cham, Switzerland, 2016. · Zbl 1372.37002
[25] C. M. Groothedde and J. D. Mireles James, Parameterization method for unstable manifolds of delay differential equations, J. Comput. Dyn., 4 (2017), pp. 21-70. · Zbl 1397.34123
[26] C. Reinhardt and J. D. Mireles James, Fourier-Taylor parameterization of unstable manifolds for parabolic partial differential equations: Formalism, implementation and rigorous validation, Indag. Math. (N.S.), 30 (2019), pp. 39-80. · Zbl 1419.35131
[27] J. Gonzalez, N. Tuncer, and J. D. Mireles James, Finite Element Approximation of Invariant Manifolds by the Parameterization Method, manuscript. · Zbl 1538.65358
[28] R. Todd and J. Morgan, Automated finite-difference time evolution code for conservation laws, Minnesota J. Undergrad. Math., 4 (2019).
[29] G. Haller, Homoclinic jumping in the perturbed nonlinear Schrödinger equation, Comm. Pure Appl. Math., 52 (1999), pp. 1-47. · Zbl 0941.35100
[30] G. Haller, G. Menon, and V. M. Rothos, Šilnikov manifolds in coupled nonlinear Schrödinger equations, Phys. Lett. A, 263 (1999), pp. 175-185. · Zbl 0944.37037
[31] F. Bai, A. Spence, and A. M. Stuart, The numerical computation of heteroclinic connections in systems of gradient partial differential equations, SIAM J. Appl. Math., 53 (1993), pp. 743-769. · Zbl 0786.65077
[32] F. S. Bai, A. Spence, and A. M. Stuart, Numerical computations of coarsening in the one-dimensional Cahn-Hilliard model of phase separation, Phys. D, 78 (1994), pp. 155-165. · Zbl 0824.35127
[33] F. Christiansen, P. Cvitanović, and V. Putkaradze, Spatiotemporal chaos in terms of unstable recurrent patterns, Nonlinearity, 10 (1997), pp. 55-70. · Zbl 0907.58042
[34] Y. Lan and P. Cvitanović, Unstable recurrent patterns in Kuramoto-Sivashinsky dynamics, Phys. Rev. E (3), 78 (2008), 026208.
[35] D. Viswanath and P. Cvitanović, Stable manifolds and the transition to turbulence in pipe flow, J. Fluid Mech., 627 (2009), pp. 215-233. · Zbl 1171.76386
[36] P. Cvitanović, R. L. Davidchack, and E. Siminos, On the state space geometry of the Kuramoto-Sivashinsky flow in a periodic domain, SIAM J. Appl. Dyn. Syst., 9 (2010), pp. 1-33. · Zbl 1267.35027
[37] J. Halcrow, J. F. Gibson, P. Cvitanović, and D. Viswanath, Heteroclinic connections in plane Couette flow, J. Fluid Mech., 621 (2009), pp. 365-376. · Zbl 1171.76383
[38] C. Foias, M. S. Jolly, I. G. Kevrekidis, G. R. Sell, and E. S. Titi, On the computation of inertial manifolds, Phys. Lett. A, 131 (1988), pp. 433-436.
[39] M. S. Jolly, I. G. Kevrekidis, and E. S. Titi, Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: Analysis and computations, Phys. D, 44 (1990), pp. 38-60. · Zbl 0704.58030
[40] M. S. Jolly, Bifurcation computations on an approximate inertial manifold for the 2D Navier-Stokes equations, Phys. D, 63 (1993), pp. 8-20. · Zbl 0767.35059
[41] M. S. Jolly, R. Rosa, and R. Temam, Accurate computations on inertial manifolds, SIAM J. Sci. Comput., 22 (2001), pp. 2216-2238. · Zbl 0988.34048
[42] Y.-M. Chung and M. S. Jolly, A unified approach to compute foliations, inertial manifolds, and tracking solutions, Math. Comp., 84 (2015), pp. 1729-1751. · Zbl 1347.37134
[43] A. J. Roberts, The application of centre-manifold theory to the evolution of systems which vary slowly in space, J. Aust. Math. Soc. Ser. B, 29 (1988), pp. 480-500. · Zbl 0675.76004
[44] A. J. Roberts, The utility of an invariant manifold description of the evolution of a dynamical system, SIAM J. Math. Anal., 20 (1989), pp. 1447-1458. · Zbl 0679.34061
[45] G. N. Mercer and A. J. Roberts, A centre manifold description of contaminant dispersion in channels with varying flow properties, SIAM J. Appl. Math., 50 (1990), pp. 1547-1565. · Zbl 0711.76086
[46] X. Chen, A. J. Roberts, and J. Duan, Centre manifolds for infinite dimensional random dynamical systems, Dyn. Syst., 34 (2019), pp. 334-355. · Zbl 1415.37098
[47] George Haller and Sten Ponsioen, Nonlinear normal modes and spectral submanifolds: Existence, uniqueness and use in model reduction, Nonlinear Dynam., 86 (2016), pp. 1493-1534. · Zbl 1371.37098
[48] R. Szalai, D. Ehrhardt, and G. Haller, Nonlinear model identification and spectral submanifolds for multi-degree-of-freedom mechanical vibrations, Proc. A., 473 (2017), 20160759. · Zbl 1402.70021
[49] G. Haller and S. Ponsioen, Exact model reduction by a slow-fast decomposition of nonlinear mechanical systems, Nonlinear Dynam., 90 (2017), pp. 617-647. · Zbl 1390.70048
[50] F. Kogelbauer and G. Haller, Rigorous model reduction for a damped-forced nonlinear beam model: An infinite-dimensional analysis, J. Nonlinear Sci., 28 (2018), pp. 1109-1150. · Zbl 1402.35279
[51] T. Breunung and G. Haller, Explicit backbone curves from spectral submanifolds of forced-damped nonlinear mechanical systems, Proc. A., 474 (2018), 20180083. · Zbl 1402.34047
[52] B. Krauskopf and K. Green, Computing unstable manifolds of periodic orbits in delay differential equations, J. Comput. Phys., 186 (2003), pp. 230-249. · Zbl 1017.65102
[53] B. Krauskopf, K. Green, and K. Engelborghs, From Local to Global One-Dimensional Unstable Manifolds in Delay Differential Equations, in EQUADIFF 2003, World Scientific, Hackensack, NJ, 2005, pp. 175-180. · Zbl 1106.34333
[54] P. Collins and B. Krauskopf, Chaotic Lasers: Manifolds, Bifurcations and Symbolic Dynamics, in EQUADIFF 2003, World Scientific, Hackensack, NJ, 2005, pp. 871-876. · Zbl 1106.34320
[55] K. Green, B. Krauskopf, and K. Engelborghs, One-dimensional unstable eigenfunction and manifold computations in delay differential equations, J. Comput. Phys., 197 (2004), pp. 86-98. · Zbl 1052.65115
[56] R. C. Calleja, A. R. Humphries, and B. Krauskopf, Resonance phenomena in a scalar delay differential equation with two state-dependent delays, SIAM J. Appl. Dyn. Syst., 16 (2017), pp. 1474-1513. · Zbl 1371.34115
[57] M. Dellnitz, M. Hessel-Von Molo, and A. Ziessler, On the computation of attractors for delay differential equations, J. Comput. Dyn., 3 (2016), pp. 93-112. · Zbl 1358.34081
[58] J. Bouwe van den Berg, J. D. Mireles James, and C. Reinhardt, Computing (un)stable manifolds with validated error bounds: Non-resonant and resonant spectra, J. Nonlinear Sci., 26 (2016), pp. 1055-1095. · Zbl 1360.37176
[59] J.-P. Lessard, J. D. Mireles James, and C. Reinhardt, Computer assisted proof of transverse saddle-to-saddle connecting orbits for first order vector fields, J. Dynam. Differential Equations, 26 (2014), pp. 267-313. · Zbl 1351.37107
[60] T. Kapitula and K. Promislow, Spectral and Dynamical Stability of Nonlinear Waves, Applied Mathematical Sciences 185, Springer, New York, 2013. · Zbl 1297.37001
[61] K.-J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations, Grad. Texts in Math. 194, Springer, New York, 2000. · Zbl 0952.47036
[62] B. Barker, Evans Function Computation, Master’s thesis, Brigham Young University, Provo, Utah, 2009.
[63] B. Barker, J. Humpherys, G. Lyng, and J. Lytle, Evans function computation for the stability of travelling waves, Philos. Trans. Roy. Soc. A, 376 (2018), 20170184. · Zbl 1402.65052
[64] B. Sandstede, Numerical error analysis for Evans function computations: A numerical gap lemma, centered-coordinate methods, and the unreasonable effectiveness of continuous orthogonalization, Handbook of Dynamical Systems II, Elsevier, Amsterdam, 2002, pp. 983-1055. · Zbl 1056.35022
[65] S. Benzoni-Gavage, D. Serre, and K. Zumbrun, Alternate Evans functions and viscous shock waves, SIAM J. Math. Anal., 32 (2001), pp. 929-962 (electronic). · Zbl 0985.34075
[66] T. J. Bridges and G. Derks, The symplectic Evans matrix, and the instability of solitary waves and fronts, Arch. Ration. Mech. Anal., 156 (2001), pp. 1-87. · Zbl 0981.37030
[67] T. J. Bridges and G. Derks, The symplectic Evans matrix and solitary wave instability, in Symmetry and Perturbation Theory (Cala Gonone, 2001), World Scientific, River Edge, NJ, 2001, pp. 32-37. · Zbl 1061.37505
[68] T. J. Bridges and G. Derks, Constructing the symplectic Evans matrix using maximally analytic individual vectors, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), pp. 505-526. · Zbl 1065.37055
[69] J. W. Evans, Nerve axon equations. I. Linear approximations, Indiana Univ. Math. J., 21 (1972), pp. 877-885. · Zbl 0235.92002
[70] J. W. Evans, Nerve axon equations. II. Stability at rest, Indiana Univ. Math. J., 22 (1972), pp. 75-90. · Zbl 0236.92010
[71] J. W. Evans, Nerve axon equations. III. Stability of the nerve impulse, Indiana Univ. Math. J., 22 (1972), pp. 577-593. · Zbl 0245.92004
[72] J. W. Evans, Nerve axon equations. IV. The stable and the unstable impulse, Indiana Univ. Math. J., 24 (1975), pp. 1169-1190. · Zbl 0317.92006
[73] J. W. Evans and J. A. Feroe, Traveling waves of infinitely many pulses in nerve equations, Math. Biosci., 37 (1977), pp. 23-50. · Zbl 0377.92003
[74] A. Ghazaryan, S. Lafortune, and V. Manukian, Stability of front solutions in a model for a surfactant driven flow on an inclined plane, Phys. D, 307 (2015), pp. 1-13. · Zbl 1364.35036
[75] G. N. Mercer, H. S. Sidhu, R. O. Weber, and V. Gubernov, Evans function stability of combustion waves, SIAM J. Appl. Math., 63 (2003), pp. 1259-1275. · Zbl 1024.35044
[76] P. Howard and K. Zumbrun, The Evans function and stability criteria for degenerate viscous shock waves, Discrete Contin. Dyn. Syst., 10 (2004), pp. 837-855. · Zbl 1058.35033
[77] J. Humpherys, B. Sandstede, and K. Zumbrun, Efficient computation of analytic bases in Evans function analysis of large systems, Numer. Math., 103 (2006), pp. 631-642. · Zbl 1104.65081
[78] T. Kapitula and B. Sandstede, Edge bifurcations for near integrable systems via Evans function techniques, SIAM J. Math. Anal., 33 (2002), pp. 1117-1143. · Zbl 1092.37048
[79] S. Lafortune, J. Lega, and S. Madrid, Instability of local deformations of an elastic rod: Numerical evaluation of the Evans function, SIAM J. Appl. Math., 71 (2011), pp. 1653-1672. · Zbl 1233.35188
[80] M. Oh and K. Zumbrun, Stability of periodic solutions of conservation laws with viscosity: Analysis of the Evans function, Arch. Ration. Mech. Anal., 166 (2003), pp. 99-166. · Zbl 1074.35006
[81] M. Oh and B. Sandstede, Evans functions for periodic waves on infinite cylindrical domains, J. Differential Equations, 248 (2010), pp. 544-555. · Zbl 1180.35096
[82] R. Plaza and K. Zumbrun, An Evans function approach to spectral stability of small-amplitude shock profiles, Discrete Contin. Dyn. Syst., 10 (2004), pp. 885-924. · Zbl 1058.35164
[83] T. Kapitula, N. Kutz, and B. Sandstede, The Evans function for nonlocal equations, Indiana Univ. Math. J., 53 (2004), pp. 1095-1126. · Zbl 1059.35137
[84] B. Sandstede and A. Scheel, Evans function and blow-up methods in critical eigenvalue problems, Discrete Contin. Dyn. Syst., 10 (2004), pp. 941-964. · Zbl 1068.35080
[85] B. Sandstede, Evans functions and nonlinear stability of traveling waves in neuronal network models, Internat. J. Bifur. Chaos, 17 (2007), pp. 2693-2704. · Zbl 1144.35342
[86] P. Gray and S. K. Scott, Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Oscillations and instabilities in the system \({A} + 2{B} \rightarrow 3{B}, {B} \rightarrow{C} \), Chem. Engrg. Sci, 39 (1984), pp. 1087-1097.
[87] J. K. Hale, L. A. Peletier, and W. C. Troy, Exact homoclinic and heteroclinic solutions of the Gray-Scott model for autocatalysis, SIAM J. Appl. Math, 61 (2000), pp. 102-130. · Zbl 0965.34037
[88] J. Bouwe van den Berg, J. D. Mireles-James, J.-P. Lessard, and K. Mischaikow, Rigorous numerics for symmetric connecting orbits: Even homoclinics of the Gray-Scott equation, SIAM J. Math. Anal,, 43 (2011), pp. 1557-1594. · Zbl 1231.34081
[89] A. Doelman, R. A. Gardner, and T. J. Kaper, Stability analysis of singular patterns in the 1D Gray-Scott model: A matched asymptotics approach, Phys. D, 122 (1998), pp. 1-36. · Zbl 0943.34039
[90] P. C. Chang, Modulation Stability of Oscillatory Pulse Solutions of the Parameterically-Forced Nonlinear Schrödinger Equation, Master’s thesis, Simon Fraser University, Vancover, CA, 2001.
[91] M. Breden, J.-P. Lessard, and J. D. Mireles James, Computation of maximal local (un)stable manifold patches by the parameterization method, Indag. Math. (N.S.), 27 (2016), pp. 340-367. · Zbl 1336.65197
[92] O. Fogelklou, W. Tucker, and G. Kreiss, A computer-assisted proof of the existence of traveling wave solutions to the scalar Euler equations with artificial viscosity, NoDEA Nonlinear Differential Equations Appl., 19 (2012), pp. 97-131. · Zbl 1258.65092
[93] J. Bouwe van den Berg, A. Deschênes, J.-P. Lessard, and J. D. Mireles James, Stationary coexistence of hexagons and rolls via rigorous computations, SIAM J. Appl. Dyn. Syst., 14 (2015), pp. 942-979. · Zbl 1371.37036
[94] I. Balázs, J. Bouwe van den Berg, J. Courtois, J. Dudás, J.-P. Lessard, A. Vörös-Kiss, J. F. Williams, and X. Y. Yin, Computer-assisted proofs for radially symmetric solutions of PDEs, J. Comput. Dyn., 5 (2018), pp. 61-80. · Zbl 1409.35017
[95] B. Barker, Numerical Proof of Stability of Roll Waves in the Small-Amplitude Limit for Inclined Thin Film Flow, Ph.D. thesis, Indiana University, Bloomington, IN, 2014. · Zbl 1300.35121
[96] B. Barker, Numerical proof of stability of roll waves in the small-amplitude limit for inclined thin film flow, J. Differential Equations, 257 (2014), pp. 2950-2983. · Zbl 1300.35121
[97] G. Arioli and H. Koch, Existence and stability of traveling pulse solutions of the FitzHugh-Nagumo equation, Nonlinear Anal., 113 (2015), pp. 51-70. · Zbl 1304.35181
[98] B. Barker and K. Zumbrun, Numerical proof of stability of viscous shock profiles, Math. Models Methods Appl. Sci., 26 (2016), pp. 2451-2469. · Zbl 1356.35170
[99] M. Creek, R. Donninger, W. Schlag, and S. Snelson, Linear stability of the Skyrmion, Int. Math. Res. Not. IMRN, 2017 (2017), pp. 2497-2537. · Zbl 1405.83018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.