×

Numerical proof of stability of viscous shock profiles. (English) Zbl 1356.35170

Summary: We carry out the first rigorous numerical proof based on Evans function computations of stability of viscous shock profiles, for the system of isentropic gas dynamics with monatomic equation of state. We treat a selection of shock strengths ranging from the lower stability boundary of Mach number \(\approx 1.86\), below which profiles are known by energy estimates to be stable, to the upper stability boundary of \(\approx 1669\), above which profiles are expected to be provable by rigorous asymptotic analysis to be stable. These results open the possibilities of: (i) automatic rigorous verification of stability or instability of individual shocks of general systems, and (ii) rigorous proof of stability of all shocks of particular systems.

MSC:

35Q35 PDEs in connection with fluid mechanics
65G30 Interval and finite arithmetic
76N15 Gas dynamics (general theory)
35C07 Traveling wave solutions
35B35 Stability in context of PDEs
76L05 Shock waves and blast waves in fluid mechanics
68T15 Theorem proving (deduction, resolution, etc.) (MSC2010)

Software:

STABLAB; INTLAB; GitHub

References:

[1] Barker, B., Numerical proof of stability of roll waves in the small-amplitude limit for inclined thin film flow, J. Differential Equations257 (2014) 2950-2983. · Zbl 1300.35121
[2] Barker, B., Humpherys, J., Lyng, G. D. and Zumbrun, K., Viscous hyperstabilization of detonation waves in one space dimension, SIAM J. Appl. Math.75 (2015) 855-906. · Zbl 1320.35271
[3] B. Barker, J. Humpherys, J. Lytle and K. Zumbrun, STABLAB: A MATLAB-based numerical library for Evans function computation, preprint (2015), https://github.com/nonlinear-waves/stablab.git.
[4] Barker, B., Humpherys, J., Rudd, K. and Zumbrun, K., Stability of viscous shocks in isentropic gas dynamics, Commun. Math. Phys.281 (2008) 231-249. · Zbl 1171.35071
[5] Batchelor, G. K., An Introduction to Fluid Dynamics, Paperback edn., (Cambridge Univ. Press, 1999). · Zbl 0958.76001
[6] Benzoni-Gavage, S., Serre, D. and Zumbrun, K., Alternate Evans functions and viscous shock waves, SIAM J. Math. Anal.32 (2001) 929-962. · Zbl 0985.34075
[7] T. Bloom, L. P. Bos, J.-P. Calvi and N. Levenberg, Polynomial interpolation and approximation in \(\mathbb{C}^d\), arXiv:1111.6418.
[8] Brauer, F., Bounds for solutions of ordinary differential equations, Proc. Amer. Math. Soc.14 (1963) 36-43. · Zbl 0113.06803
[9] Brin, L. Q., Numerical testing of the stability of viscous shock waves, Math. Comput.70 (2001) 1071-1088. · Zbl 0980.65092
[10] L. Q. Brin and K. Zumbrun, Analytically varying eigenvectors and the stability of viscous shock waves, Mat. Contemp.22 (2002) 19-32. Seventh Workshop on Partial Differential Equations, Part I (Rio de Janeiro, 2001). · Zbl 1044.35057
[11] Conti, R., Sulla prolugabilita delle soluzioni di un sistema di equazioni differenziali ordinarie, Boll. Un. Math. Ital.11 (1956) 510-514. · Zbl 0072.30403
[12] Gunttner, R., Evaluation of Lebesgue constants, SIAM J. Numer. Anal.17 (1980) 512-520. · Zbl 0439.41004
[13] Humpherys, J., Lafitte, O. and Zumbrun, K., Stability of isentropic Navier-Stokes shocks in the high-Mach number limit, Commun. Math. Phys.293 (2010) 1-36. · Zbl 1195.35244
[14] Kato, T., Perturbation Theory for Linear Operators, (Springer, 1995). Reprint of the 1980 edition. · Zbl 0836.47009
[15] Mascia, C. and Zumbrun, K., Pointwise Green function bounds for shock profiles of systems with real viscosity, Arch. Ration. Mech. Anal.169 (2003) 177-263. · Zbl 1035.35074
[16] Mascia, C. and Zumbrun, K., Stability of large-amplitude viscous shock profiles of hyperbolic-parabolic systems, Arch. Ration. Mech. Anal.172 (2004) 93-131. · Zbl 1058.35160
[17] Matsumura, A. and Nishihara, K., On the stability of travelling wave solutions of a one-dimensional model system for compressible viscous gas, Japan J. Appl. Math.2 (1985) 1725. · Zbl 0602.76080
[18] Michelson, D., Stability of the bunsen flame profiles in the Kuramoto-Sivashinsky equation, SIAM J. Math. Anal.27 (1996) 765-781. · Zbl 0851.34020
[19] Pego, R. L. and Weinstein, M. I., Eigenvalues, and instabilities of solitary waves, Philos. Trans. Roy. Soc. London Ser. A340 (1992) 47-94. · Zbl 0776.35065
[20] Reddy, S. C. and Weideman, J. A. C., The accuracy of the Chebyshev differencing method for analytic functions, SIAM J. Numer. Anal.42 (2005) 2176-2184. · Zbl 1086.65017
[21] Rump, S. M., INTLAB — INTerval LABoratory, in Developments in Reliable Computing, ed. Csendes, T. (Kluwer, 1999), pp. 77-104. · Zbl 0949.65046
[22] Serre, D., Systems of Conservation Laws 1: Hyperbolicy, Entropies, Shock Waves (Cambridge Univ. Press, 1999). Translated from the 1996 French Original by I. N. Sneddon.
[23] Serre, D., Systems of Conservation Laws 2: Geometric Structures, Oscillations, and Initial-Boundary Value Problems (Cambridge Univ. Press, 2000). Translated from the 1996 French Original by I. N. Sneddon. · Zbl 0936.35001
[24] Smøller, J., Shock Waves and Reaction Diffusion Equations, 2nd edn. (Springer, 1994). · Zbl 0807.35002
[25] Tadmor, E., The exponential accuracy of Fourier and Chebyshev differencing methods, SIAM J. Numer. Anal.23 (1986) 1-10. · Zbl 0613.65017
[26] Wintner, A., Ordinary differential equations and Laplace transforms, Amer. J. Math.79 (1957) 265-294. · Zbl 0077.08404
[27] Zumbrun, K., Multidimensional stability of planar viscous shock waves, in Advances in the Theory of Shock Waves, , Vol. 47 (Birkhäuser, 2001), pp. 307-516. · Zbl 0989.35089
[28] Zumbrun, K. and Howard, P., Pointwise semigroup methods and stability of viscous shock waves, Indiana Univ. Math. J.47 (1998) 741-871. · Zbl 0928.35018
[29] Zumbrun, K. and Serre, D., Viscous and inviscid stability of multidimensional planar shock fronts, Indiana Univ. Math. J.48 (1999) 937-992. · Zbl 0944.76027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.