×

Numerical continuation of boundaries in parameter space between stable and unstable periodic travelling wave (wavetrain) solutions of partial differential equations. (English) Zbl 1271.65132

Summary: A variety of numerical methods are available for determining the stability of a given solution of a partial differential equation. However, for a family of solutions, the calculation of boundaries in parameter space between stable and unstable solutions remains a major challenge. This paper describes an algorithm for the calculation of such stability boundaries, for the case of periodic travelling wave solutions of spatially extended local dynamical systems. The algorithm is based on numerical continuation of the spectrum. It is implemented in a fully automated way by the software package wavetrain, and two examples of its use are presented. One example is the Klausmeier model for banded vegetation in semi-arid environments, for which the change in stability is of Eckhaus (sideband) type; the other is the two-component Oregonator model for the photosensitive Belousov-Zhabotinskii reaction, for which the change in stability is of Hopf type.

MSC:

65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35G61 Initial-boundary value problems for systems of nonlinear higher-order PDEs
35B35 Stability in context of PDEs
35Q92 PDEs in connection with biology, chemistry and other natural sciences
35K57 Reaction-diffusion equations
Full Text: DOI

References:

[1] Kopell, N., Howard, L.N.: Plane wave solutions to reaction-diffusion equations. Stud. Appl. Math. 52, 291-328 (1973) · Zbl 0305.35081
[2] Aranson, I.S., Kramer, L.: The world of the complex Ginzburg-Landau equation. Rev. Modern Phys. 74, 99-143 (2002) · Zbl 1205.35299 · doi:10.1103/RevModPhys.74.99
[3] Bridges, T.J., Derks, G., Gottwald, G.: Stability and instability of solitary waves of the fifth-order KdV equation: a numerical framework. Physica D 172, 190-216 (2002) · Zbl 1047.37053 · doi:10.1016/S0167-2789(02)00655-3
[4] Coombes, S., Owen, M.R.: Evans functions for integral neural field equations with Heaviside firing rate function. SIAM J. Appl. Dyn. Syst. 34, 574-600 (2004) · Zbl 1067.92019 · doi:10.1137/040605953
[5] Aparicio, N.D., Malham, S.J.A., Oliver, M.: Numerical evaluation of the Evans function by Magnus integration. BIT 45, 219-258 (2005) · Zbl 1078.65549 · doi:10.1007/s10543-005-0001-8
[6] Ledoux, V., Malham, S.J.A., Niesen, J., Thümmler, V.: Computing stability of multi-dimensional travelling waves. SIAM J. Appl. Dyn. Syst. 8, 480-507 (2009) · Zbl 1167.65412 · doi:10.1137/080724009
[7] Ledoux, V., Malham, S.J.A., Thümmler, V.: Grassmannian spectral shooting. Math. Comput. 79, 1585-1619 (2010) · Zbl 1196.65132 · doi:10.1090/S0025-5718-10-02323-9
[8] Evans, J.W.: Nerve axon equations: IV The stable and unstable pulse. Indiana Univ. Math. J. 24, 1169-1190 (1975) · Zbl 0317.92006 · doi:10.1512/iumj.1975.24.24096
[9] Alexander, J., Gardner, R., Jones, C.: A topological invariant arising in the stability analysis of travelling waves. J. Reine Angew. Math. 410, 167-212 (1990) · Zbl 0705.35070
[10] Gardner, R.A.: On the structure of the spectra of periodic travelling waves. J. Math. Pures Appl. 72, 415-439 (1993) · Zbl 0831.35077
[11] Deconinck, B., Kutz, J.N.: Computing spectra of linear operators using the Floquet-Fourier-Hill method. J. Comput. Phys. 219, 296-321 (2006) · Zbl 1105.65119 · doi:10.1016/j.jcp.2006.03.020
[12] Deconinck, B., Kiyak, F., Carter, J.D., Kutz, J.N.: SpectrUW: a laboratory for the numerical exploration of spectra of linear operators. Math. Comput. Simul. 74, 370-379 (2007) · Zbl 1113.65058 · doi:10.1016/j.matcom.2006.10.011
[13] Rademacher, J.D.M., Sandstede, B., Scheel, A.: Computing absolute and essential spectra using continuation. Physica D 229, 166-183 (2007) · Zbl 1119.65114 · doi:10.1016/j.physd.2007.03.016
[14] Bordiougov, G., Engel, H.: From trigger to phase waves and back again. Physica D 215, 25-37 (2006) · Zbl 1094.35061 · doi:10.1016/j.physd.2006.01.005
[15] Röder, G., Bordyugov, G., Engel, H., Falcke, M.: Wave trains in an excitable FitzHugh-Nagumo model: bistable dispersion relation and formation of isolas. Phys. Rev. E 75(3), 036202 (2007)
[16] Smith, M.J., Sherratt, J.A.: The effects of unequal diffusion coefficients on periodic travelling waves in oscillatory reaction-diffusion systems. Physica D 236, 90-103 (2007) · Zbl 1361.34040 · doi:10.1016/j.physd.2007.07.013
[17] Sherratt, J.A., Smith, M.J.: Periodic travelling waves in cyclic populations: field studies and reaction-diffusion models. J. R. Soc. Interface 5, 483-505 (2008) · doi:10.1098/rsif.2007.1327
[18] Sherratt, J.A.: Numerical continuation methods for studying periodic travelling wave (wavetrain) solutions of partial differential equations. Appl. Math. Comput. 218, 4684-4694 (2012) · Zbl 1244.65155 · doi:10.1016/j.amc.2011.11.005
[19] Trefethen, L.N., Embree, M.: Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press, Princeton (2005) · Zbl 1085.15009
[20] Janiaud, B., Pumir, A., Bensimon, D., Croquette, V., Richter, H., Kramer, L.: The Eckhaus instability for traveling waves. Physica D 55, 269-286 (1992) · Zbl 0800.76015 · doi:10.1016/0167-2789(92)90060-Z
[21] Brusch, L., Torcini, A., van Hecke, M., Zimmermann, M.G., Bär, M.: Modulated amplitude waves and defect formation in the one-dimensional complex Ginzburg-Landau equation. Physica D 160, 127-148 (2001) · Zbl 0996.35071 · doi:10.1016/S0167-2789(01)00355-4
[22] Sherratt, J.A., Smith, M.J., Rademacher, J.D.M.: Locating the transition from periodic oscillations to spatiotemporal chaos in the wake of invasion. Proc. Natl. Acad. Sci. USA 106, 10890-10895 (2009) · Zbl 1203.37062 · doi:10.1073/pnas.0900161106
[23] Sandstede, B.; Fiedler, B. (ed.), Stability of travelling waves, 983-1055 (2002), Amsterdam · Zbl 1056.35022 · doi:10.1016/S1874-575X(02)80039-X
[24] Rademacher, J.D.M., Scheel, A.: Instabilities of wave trains and Turing patterns in large domains. Int. J. Bifur. Chaos 17, 2679-2691 (2007) · Zbl 1141.37359 · doi:10.1142/S0218127407018683
[25] Doedel, EJ; Kernevez, JP; Othmer, HG (ed.), A numerical analysis of wave phenomena in a reaction diffusion model, 261-273 (1986), Berlin · Zbl 0591.92013 · doi:10.1007/978-3-642-93318-9_17
[26] Doedel, E.J., Kernevez, J.P.: Auto: software for continuation and bifurcation problems in ordinary differential equations. Applied Mathematics Report, California Institute of Technology, Pasadena (1986). See also pp. 374-388 of http://cmvl.cs.concordia.ca/courses/comp-6361/fall-2011/notes.pdf
[27] Atkinson, F.V.: Discrete and Continuous Boundary Problems. Academic, New York (1964) · Zbl 0117.05806
[28] Kreiss, H.O.: Difference approximation for boundary and eigenvalue problems for ordinary differential equations. Math. Comput. 26, 605-624 (1972) · Zbl 0264.65044 · doi:10.1090/S0025-5718-1972-0373296-3
[29] de Boor, C., Swartz, B.: Collocation approximation to eigenvalues of an ordinary differential equation: the principle of the thing. Math. Comput. 35, 679-694 (1980) · Zbl 0444.65053 · doi:10.1090/S0025-5718-1980-0572849-1
[30] Chatelin, F.: The spectral approximation of linear operators with applications to the computation of eigenelements of differential and integral operators. SIAM Rev. 23, 495-522 (1981) · Zbl 0472.65048 · doi:10.1137/1023099
[31] Merchant, S.M.: Spatiotemporal patterns in mathematical models for predator invasions. PhD thesis, University of British Columbia (2009). http://www.iam.ubc.ca/theses/SandraMerchant/SMerchant_PhD_Thesis.pdf · Zbl 1244.65155
[32] Doedel, E.J.: Auto, a program for the automatic bifurcation analysis of autonomous systems. Cong. Numer. 30, 265-384 (1981) · Zbl 0511.65064
[33] Doedel, E.J., Keller, H.B., Kernévez, J.P.: Numerical analysis and control of bifurcation problems: (I) bifurcation in finite dimensions. Int. J. Bifurc. Chaos 1, 493-520 (1991) · Zbl 0876.65032 · doi:10.1142/S0218127491000397
[34] Doedel, EJ; Govaerts, W.; Kuznetsov, YA; Dhooge, A.; Doedel, EJ (ed.); Domokos, G. (ed.); Kevrekidis, IG (ed.), Numerical continuation of branch points of equilibria and periodic orbits, 145-164 (2006), Singapore
[35] Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du, J., Croz, Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: Lapack Users’ Guide, 3rd edn. Society for Industrial and Applied Mathematics, Philadelphia (1999) · Zbl 0934.65030
[36] Fornberg, B.: Calculation of weights in finite difference formulas. SIAM Rev. 40, 685-691 (1998) · Zbl 0914.65010 · doi:10.1137/S0036144596322507
[37] Champneys, A.R., Kuznetsov, Y.A., Sandstede, B.: A numerical toolbox for homoclinic bifurcation analysis. Int. J. Bifur. Chaos 6, 867-887 (1996) · Zbl 0877.65058 · doi:10.1142/S0218127496000485
[38] Dawes, J.H.P.: Localized pattern formation with a large-scale mode: slanted snaking. SIAM J. Appl. Dyn. Syst. 7, 186-206 (2008) · Zbl 1159.76333 · doi:10.1137/06067794X
[39] Dawes, J.H.P.: Modulated and localized states in a finite domain. SIAM J. Appl. Dyn. Syst. 8, 909-930 (2009) · Zbl 1167.76016 · doi:10.1137/080724344
[40] Doedel, E.J., Kooi, B.W., Van Voorn, G.A.K., Kuznetsov, Y.A.: Continuation of connecting orbits in 3D-ODEs: (II) cycle-to-cycle connections. Int. J. Bifurc. Chaos 19, 159-169 (2009) · Zbl 1170.37339 · doi:10.1142/S0218127409022804
[41] Klausmeier, C.A.: Regular and irregular patterns in semiarid vegetation. Science 284, 1826-1828 (1999) · doi:10.1126/science.284.5421.1826
[42] Callaway, R.M.: Positive interactions among plants. Bot. Rev. 61, 306-349 (1995) · doi:10.1007/BF02912621
[43] Hills, R.C.: The influence of land management and soil characteristics on infiltration and the occurrence of overland flow. J. Hydrol. 13, 163-181 (1971) · doi:10.1016/0022-1694(71)90213-7
[44] Rietkerk, M., Ketner, P., Burger, J., Hoorens, B., Olff, H.: Multiscale soil and vegetation patchiness along a gradient of herbivore impact in a semi-arid grazing system in West Africa. Plant Ecol. 148, 207-224 (2000) · doi:10.1023/A:1009828432690
[45] Valentin, C., d’Herbès, J.M., Poesen, J.: Soil and water components of banded vegetation patterns. Catena 37, 1-24 (1999) · doi:10.1016/S0341-8162(99)00053-3
[46] Deblauwe, V.: Modulation des structures de végétation auto-organisées en milieu aride [trans: self-organized vegetation pattern modulation in arid climates]. PhD thesis, Université Libre de Bruxelles. http://theses.ulb.ac.be/ETD-db/collection/available/ULBetd-04122010-093151/ (2010) · Zbl 1244.65155
[47] Montana, C.; Seghieri, J.; Cornet, A.; Tongway, DJ (ed.); Valentin, C. (ed.); Seghieri, J. (ed.), Vegetation dynamics: recruitment and regeneration in two-phase mosaics, 132-145 (2001), New York · doi:10.1007/978-1-4613-0207-0_7
[48] Tongway, DJ; Ludwig, JA; Tongway, DJ (ed.); Valentin, C. (ed.); Seghieri, J. (ed.), Theories on the origins, maintainance, dynamics, and functioning of banded landscapes, 20-31 (2001), New York · doi:10.1007/978-1-4613-0207-0_2
[49] Sherratt, J.A.: Pattern solutions of the Klausmeier model for banded vegetation in semi-arid environments II: patterns with the largest possible propagation speeds. Proc. R. Soc. Lond. A 467, 3272-3294 (2011) · Zbl 1239.92085 · doi:10.1098/rspa.2011.0194
[50] Sherratt, J.A.: An analysis of vegetation stripe formation in semi-arid landscapes. J. Math. Biol. 51, 183-197 (2005) · Zbl 1068.92047 · doi:10.1007/s00285-005-0319-5
[51] Sherratt, J.A.: Pattern solutions of the Klausmeier model for banded vegetation in semi-arid environments I. Nonlinearity 23, 2657-2675 (2010) · Zbl 1197.92047 · doi:10.1088/0951-7715/23/10/016
[52] Sherratt, J.A.: Pattern solutions of the Klausmeier model for banded vegetation in semi-arid environments III: the transition between homoclinic solutions (2012, submitted) · Zbl 1261.35144
[53] van der Stelt, S., Doelman, A., Hek, G., Rademacher, J.D.M.: Rise and fall of periodic patterns for a generalized Klausmeier-Gray-Scott model. J. Nonlinear Sci. (2012). doi:10.1007/s00332-012-9139-0 · Zbl 1270.35093
[54] Doelman, A., Rademacher, J.D.M., van der Stelt, S.: Hopf dances near the tips of Busse balloons. Discrete Continuous Dyn. Syst., Ser. S 5, 61-92 (2012) · Zbl 1252.35032 · doi:10.3934/dcdss.2012.5.61
[55] Lefever, R., Lejeune, O.: On the origin of tiger bush. Bull. Math. Biol. 59, 263-294 (1997) · Zbl 0903.92031 · doi:10.1007/BF02462004
[56] HilleRisLambers, R., Rietkerk, M., van de Bosch, F., Prins, H.H.T., de Kroon, H.: Vegetation pattern formation in semi-arid grazing systems. Ecology 82, 50-61 (2001) · doi:10.1890/0012-9658(2001)082[0050:VPFISA]2.0.CO;2
[57] von Hardenberg, J., Meron, E., Shachak, M., Zarmi, Y.: Diversity of vegetation patterns and desertification. Phys. Rev. Lett. 87(19), 198101 (2001) · doi:10.1103/PhysRevLett.87.198101
[58] Rietkerk, M., Boerlijst, M.C., van Langevelde, F., HilleRisLambers, R., van de Koppel, J., Prins, H.H.T., de Roos, A.: Self-organisation of vegetation in arid ecosystems. Am. Nat. 160, 524-530 (2002) · doi:10.1086/342078
[59] Gilad, E., von Hardenberg, J., Provenzale, A., Shachak, M., Meron, E.: A mathematical model of plants as ecosystem engineers. J. Theor. Biol. 244, 680-691 (2007) · Zbl 1450.92079 · doi:10.1016/j.jtbi.2006.08.006
[60] Sherratt, J.A., Lord, G.J.: Nonlinear dynamics and pattern bifurcations in a model for vegetation stripes in semi-arid environments. Theor. Popul. Biol. 71, 1-11 (2007) · Zbl 1118.92064 · doi:10.1016/j.tpb.2006.07.009
[61] Epstein, I.R., Showalter, K.: Nonlinear chemical dynamics: oscillations, patterns and chaos. J. Phys. Chem. 100, 13132-13147 (1996) · doi:10.1021/jp953547m
[62] Vanag, V.K., Epstein, I.R.: Design and control of patterns in reaction-diffusion systems. Chaos 18(2), 026107 (2008) · doi:10.1063/1.2900555
[63] Kapral, R., Showalter, K. (ed.): Chemical Waves and Patterns. Springer, New York (1995)
[64] Bordyugov, G., Fischer, N., Engel, H., Manz, N., Steinbock, O.: Anomalous dispersion in the Belousov-Zhabotinsky reaction: experiments and modeling. Physica D 239, 766-775 (2010) · Zbl 1231.37048 · doi:10.1016/j.physd.2009.10.022
[65] Krug, H.-J., Pohlmann, L., Kuhnert, L.: Analysis of the modified complete Oregonator accounting for oxygen sensitivity and photosensitivity of Belousov-Zhabotinsky reaction. J. Phys. Chem. 94, 4862-4865 (1990) · doi:10.1021/j100375a021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.