×

A large-scale assessment of exact lumping of quantitative models in the biomodels repository. (English) Zbl 1518.92067

Summary: Chemical reaction networks are a popular formalism for modeling biological processes which supports both a deterministic and a stochastic interpretation based on ordinary differential equations and continuous-time Markov chains, respectively. In most cases, these models do not enjoy analytical solution, thus typically requiring expensive computational methods based on numerical solvers or stochastic simulations. Exact model reduction techniques can be used as an aid to lower the analysis cost by providing reduced networks that preserve the dynamics of interest to the modeler without incurring any approximation error. We hereby consider a family of techniques for both deterministic and stochastic networks which are based on equivalence relations over the species in the network, leading to a coarse graining which provides the exact aggregate time-course evolution for each equivalence class. We present a large-scale empirical assessment on the BioModels repository by measuring their compression capability over 579 models. Through a number of selected case studies, we also show their ability in yielding physically interpretable reductions that can reveal dynamical patterns of the bio-molecular processes under consideration, independently of the values of the kinetic parameters used in the models.

MSC:

92C40 Biochemistry, molecular biology
92C42 Systems biology, networks
60H30 Applications of stochastic analysis (to PDEs, etc.)

References:

[1] Antoulas, A., Approximation of Large-Scale Dynamical Systems, Advances in Design and Control (2005), SIAM · Zbl 1112.93002
[2] Argyris, G.; Lafuente, A. L.; Tribastone, M.; Tschaikowski, M.; Vandin, A., Reducing Boolean networks with backward Boolean equivalence, (Computational Methods in Systems Biology - 19th International Conference, CMSB 2021, Proceedings. Computational Methods in Systems Biology - 19th International Conference, CMSB 2021, Proceedings, Bordeaux, France, September 22-24, 2021 (2021)) · Zbl 1491.92058
[3] Ascher, U. M.; Petzold, L. R., Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations (1988), SIAM
[4] Ashburner, M.; Ball, C. A.; Blake, J. A.; Botstein, D.; Butler, H.; Cherry, J. M.; Davis, A. P.; Dolinski, K.; Dwight, S. S.; Eppig, J. T., Gene ontology: tool for the unification of biology, Nat. Genet., 25, 1, 25 (2000)
[5] Begitt, A.; Droescher, M.; Meyer, T.; Schmid, C. D.; Baker, M.; Antunes, F.; Knobeloch, K.-P.; Owen, M. R.; Naumann, R.; Decker, T.; Vinkemeier, U., Stat1-cooperative dna binding distinguishes type 1 from type 2 interferon signaling, Nat. Immunol., 15, 2, 168-176 (2014)
[6] Benes, N.; Brim, L.; Demko, M.; Pastva, S.; Safránek, D., A model checking approach to discrete bifurcation analysis, (Fitzgerald, J. S.; Heitmeyer, C. L.; Gnesi, S.; Philippou, A., FM 2016: Formal Methods - 21st International Symposium, Proceedings. FM 2016: Formal Methods - 21st International Symposium, Proceedings, Limassol, Cyprus, November 9-11, 2016. FM 2016: Formal Methods - 21st International Symposium, Proceedings. FM 2016: Formal Methods - 21st International Symposium, Proceedings, Limassol, Cyprus, November 9-11, 2016, Lecture Notes in Computer Science, vol. 9995 (2016)), 85-101 · Zbl 1427.68159
[7] Boreale, M., Algebra, coalgebra, and minimization in polynomial differential equations, (20th International Conference on Foundations of Software Science and Computation Structures (FOSSACS) (2017)), 71-87 · Zbl 1486.68109
[8] Brown, K. S.; Hill, C. C.; Calero, G. A.; Myers, C. R.; Lee, K. H.; Sethna, J. P.; Cerione, R. A., The statistical mechanics of complex signaling networks: nerve growth factor signaling, Phys. Biol., 1, 3, 184 (2004)
[9] Buchholz, P., Exact and ordinary lumpability in finite Markov chains, J. Appl. Probab., 31, 1, 59-75 (1994) · Zbl 0796.60073
[10] Cardelli, L.; Tribastone, M.; Tschaikowski, M.; Vandin, A., Forward and backward bisimulations for chemical reaction networks, (26th International Conference on Concurrency Theory (2015), CONCUR), 226-239 · Zbl 1374.68204
[11] Cardelli, L.; Tribastone, M.; Tschaikowski, M.; Vandin, A., Symbolic computation of differential equivalences, (POPL (2016)), 137-150 · Zbl 1347.68258
[12] Cardelli, L.; Tribastone, M.; Tschaikowski, M.; Vandin, A., Efficient syntax-driven lumping of differential equations, (TACAS (2016)), 93-111 · Zbl 1420.68241
[13] Cardelli, L.; Tribastone, M.; Tschaikowski, M.; Vandin, A., Maximal aggregation of polynomial dynamical systems, Proc. Natl. Acad. Sci., 114, 38, 10029-10034 (2017)
[14] Cardelli, L.; Tribastone, M.; Tschaikowski, M.; Vandin, A., Erode: a tool for the evaluation and reduction of ordinary differential equations, (International Conference on Tools and Algorithms for the Construction and Analysis of Systems (2017), Springer), 310-328
[15] Cardelli, L.; Tribastone, M.; Tschaikowski, M.; Vandin, A., Syntactic Markovian bisimulation for chemical reaction networks, (Models, Algorithms, Logics and Tools (2017), Springer), 466-483 · Zbl 1431.68072
[16] Cardelli, L.; Tribastone, M.; Tschaikowski, M.; Vandin, A., Guaranteed error bounds on approximate model abstractions through reachability analysis, (15th International Conference on Quantitative Evaluation of Systems (QEST) (2018)) · Zbl 07703951
[17] Cardelli, L.; Tribastone, M.; Tschaikowski, M.; Vandin, A., Symbolic computation of differential equivalences, Theor. Comput. Sci. (2019) · Zbl 1425.68463
[18] Cardelli, L.; Perez-Verona, I. C.; Tribastone, M.; Tschaikowski, M.; Vandin, A.; Waizmann, T., Exact maximal reduction of stochastic reaction networks by species lumping, Bioinformatics (2021)
[19] Caspi, R.; Altman, T.; Billington, R.; Dreher, K.; Foerster, H.; Fulcher, C. A.; Holland, T. A.; Keseler, I. M.; Kothari, A.; Kubo, A., The metacyc database of metabolic pathways and enzymes and the biocyc collection of pathway/genome databases, Nucleic Acids Res., 42, D1, D459-D471 (2013)
[20] Caydasi, A. K.; Lohel, M.; Grünert, G.; Dittrich, P.; Pereira, G.; Ibrahim, B., A dynamical model of the spindle position checkpoint, Mol. Syst. Biol., 8, 1, 582 (2012)
[21] Chelliah, V.; Laibe, C.; Novère, N. L., Biomodels database: a repository of mathematical models of biological processes, (Encyclopedia of Systems Biology (2013)), 134-138
[22] Consortium, U., Uniprot: a hub for protein information, Nucleic Acids Res., 43, D1, D204-D212 (2014)
[23] Courtot, M.; Juty, N.; Knüpfer, C.; Waltemath, D.; Zhukova, A.; Dräger, A.; Dumontier, M.; Finney, A.; Golebiewski, M.; Hastings, J., Controlled vocabularies and semantics in systems biology, Mol. Syst. Biol., 7, 1, 543 (2011)
[24] De Moura, L.; Bjørner, N., Z3: an efficient SMT solver, (TACAS (2008)), 337-340
[25] Degtyarenko, K.; De Matos, P.; Ennis, M.; Hastings, J.; Zbinden, M.; McNaught, A.; Alcántara, R.; Darsow, M.; Guedj, M.; Ashburner, M., Chebi: a database and ontology for chemical entities of biological interest, Nucleic Acids Res., 36, suppl_1, D344-D350 (2007)
[26] Dräger, A.; Rodriguez, N.; Dumousseau, M.; Dörr, A.; Wrzodek, C.; Le Novère, N.; Zell, A.; Hucka, M., JSBML: a flexible Java library for working with SBML, Bioinformatics, 27, 15, 2167-2168 (06 2011)
[27] Federhen, S., The ncbi taxonomy database, Nucleic Acids Res., 40, D1, D136-D143 (2011)
[28] Gillespie, D., Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem., 81, 25, 2340-2361 (December 1977)
[29] Gillespie, D. T., Stochastic simulation of chemical kinetics, Annu. Rev. Phys. Chem., 58, 1, 35-55 (2007)
[30] Gu, C., QLMOR: a projection-based nonlinear model order reduction approach using quadratic-linear representation of nonlinear systems, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 30, 9, 1307-1320 (2011)
[31] Hucka, M.; Finney, A.; Sauro, H. M.; Bolouri, H.; Doyle, J. C.; Kitano, H.; Arkin, A. P.; Bornstein, B. J.; Bray, D.; Cornish-Bowden, A., The systems biology markup language (sbml): a medium for representation and exchange of biochemical network models, Bioinformatics, 19, 4, 524-531 (2003)
[32] Hucka, M.; Bergmann, F. T.; Dräger, A.; Hoops, S.; Keating, S. M.; Le Novère, N.; Myers, C. J.; Olivier, B. G.; Sahle, S.; Schaff, J. C.; Smith, L. P.; Waltemath, D.; Wilkinson, D. J., Systems biology markup language (sbml) level 2 version 5: structures and facilities for model definitions, J. Integr. Bioinform., 12, 12, 271 (09 2015)
[33] Juty, N.; Le Novere, N.; Laibe, C., Identifiers.org and miriam registry: community resources to provide persistent identification, Nucleic Acids Res., 40, D1, D580-D586 (2011)
[34] Kanehisa, M.; Goto, S., Kegg: Kyoto encyclopedia of genes and genomes, Nucleic Acids Res., 28, 1, 27-30 (2000)
[35] Kauffman, S., Metabolic stability and epigenesis in randomly constructed genetic nets, J. Theor. Biol., 22, 3, 437-467 (1969)
[36] Kurtz, T. G., The relationship between stochastic and deterministic models for chemical reactions, J. Chem. Phys., 57, 7 (1972)
[37] Le Novère, N.; Finney, A.; Hucka, M.; Bhalla, U. S.; Campagne, F.; Collado-Vides, J.; Crampin, E. J.; Halstead, M.; Klipp, E.; Mendes, P., Minimum information requested in the annotation of biochemical models (miriam), Nat. Biotechnol., 23, 12, 1509 (2005)
[38] Le Novère, N.; Rodriguez, N.; Wrzodek, F.; Mittag, F.; Fröhlich, S.; Hucka, M.; Thomas, A.; Palsson, B.Ø.; Lewis, N. E.; Dräger, A.; Myers, C. J.; Watanabe, L.; Vazirabad, I. Y.; Kofia, V.; Gómez, H. F.; Diamantikos, A.; Netz, E.; Matthes, J.; Eichner, J.; Keller, R.; Rudolph, J.; Wrzodek, C., JSBML 1.0: providing a smorgasbord of options to encode systems biology models, Bioinformatics, 31, 20, 3383-3386 (06 2015)
[39] Li, C.; Donizelli, M.; Rodriguez, N.; Dharuri, H.; Endler, L.; Chelliah, V.; Li, L.; He, E.; Henry, A.; Stefan, M. I.; Snoep, J. L.; Hucka, M.; Le Novère, N.; Laibe, C., BioModels database: an enhanced, curated and annotated resource for published quantitative kinetic models, BMC Syst. Biol., 4, 92 (Jun 2010)
[40] Li, G.; Rabitz, H., A general analysis of exact lumping in chemical kinetics, Chem. Eng. Sci., 44, 6, 1413-1430 (1989)
[41] Miao, H.; Sangster, M. Y.; Livingstone, A. M.; Hilchey, S. P.; Zhang, L.; Topham, D. J.; Mosmann, T. R.; Holden-Wiltse, J.; Perelson, A. S.; Wu, H.; Zand, M. S., Modeling the dynamics and migratory pathways of virus-specific antibody-secreting cell populations in primary influenza infection, PLoS ONE, 9, 8, e104781 (08 2014)
[42] Miao, H.; Sangster, M. Y.; Livingstone, A. M.; Hilchey, S. P.; Zhang, L.; Topham, D. J.; Mosmann, T. R.; Holden-Wiltse, J.; Perelson, A. S.; Wu, H., Modeling the dynamics and migratory pathways of virus-specific antibody-secreting cell populations in primary influenza infection, PLoS ONE, 9, 8, Article e104781 pp. (2014)
[43] Nishimura, D., Biocarta, Biotech Software Inter. Rep.: Comput. Software J. Scient., 2, 3, 117-120 (2001)
[44] Okino, M. S.; Mavrovouniotis, M. L., Simplification of mathematical models of chemical reaction systems, Chem. Rev., 2, 98, 391-408 (1998)
[45] Ovchinnikov, A.; Pérez Verona, I.; Pogudin, G.; Tribastone, M., CLUE: exact maximal reduction of kinetic models by constrained lumping of differential equations, Bioinformatics, 02 (2021)
[46] Paige, R.; Tarjan, R., Three partition refinement algorithms, SIAM J. Comput., 16, 6, 973-989 (1987) · Zbl 0654.68072
[47] Pérez-Verona, I. C.; Tribastone, M.; Vandin, A., A large-scale assessment of exact model reduction in the biomodels repository, (Computational Methods in Systems Biology - 17th International Conference, CMSB 2019, Proceedings. Computational Methods in Systems Biology - 17th International Conference, CMSB 2019, Proceedings, Trieste, Italy, September 18-20, 2019 (2019)), 248-265 · Zbl 1422.92072
[48] Pratt, D.; Chen, J.; Welker, D.; Rivas, R.; Pillich, R.; Rynkov, V.; Ono, K.; Miello, C.; Hicks, L.; Szalma, S., Ndex, the network data exchange, Cell Syst., 1, 4, 302-305 (2015)
[49] Schnoerr, D.; Sanguinetti, G.; Grima, R., Approximation and inference methods for stochastic biochemical kinetics—a tutorial review, J. Phys. A, Math. Theor., 50, 9, Article 093001 pp. (2017) · Zbl 1360.92051
[50] Snowden, T. J.; van der Graaf, P. H.; Tindall, M. J., Methods of model reduction for large-scale biological systems: a survey of current methods and trends, Bull. Math. Biol., 79, 7, 1449-1486 (2017) · Zbl 1372.92033
[51] Stoesser, G.; Baker, W.; van den Broek, A.; Camon, E.; Garcia-Pastor, M.; Kanz, C.; Kulikova, T.; Leinonen, R.; Lin, Q.; Lombard, V., The embl nucleotide sequence database, Nucleic Acids Res., 30, 1, 21-26 (2002)
[52] Tribastone, M.; Vandin, A., Speeding up stochastic and deterministic simulation by aggregation: an advanced tutorial, (2018 Winter Simulation Conference, WSC 2018. 2018 Winter Simulation Conference, WSC 2018, Gothenburg, Sweden, December 9-12, 2018 (2018)), 336-350
[53] Turanyi, T.; Tomlin, A. S., Analysis of Kinetic Reaction Mechanisms (2014), Springer · Zbl 1314.92005
[54] Vandin, A.; Tribastone, M., Quantitative abstractions for collective adaptive systems, (SFM 2016 (2016), Bertinoro Summer School), 202-232 · Zbl 1346.68219
[55] Voit, E. O., Biochemical systems theory: a review, ISRN Biomath., 2013, 53 (2013) · Zbl 1268.92045
[56] Weiße, A. Y.; Oyarzún, D. A.; Danos, V.; Swain, P. S., Mechanistic links between cellular trade-offs, gene expression, and growth, Proc. Natl. Acad. Sci., 112, 9, E1038-E1047 (2015)
[57] Wittig, U.; Kania, R.; Golebiewski, M.; Rey, M.; Shi, L.; Jong, L.; Algaa, E.; Weidemann, A.; Sauer-Danzwith, H.; Mir, S., Sabio-rk—database for biochemical reaction kinetics, Nucleic Acids Res., 40, D1, D790-D796 (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.