×

Computational challenges in systems biology. (English) Zbl 1302.92042

Summary: Systems biology is a broad field that incorporates both computational and experimental approaches to provide a system level understanding of biological function. Initial forays into computational systems biology have focused on a variety of biological networks such as protein-protein interaction, signaling, transcription and metabolic networks. In this review we will provide an overview of available data relevant to systems biology, properties of biological networks, algorithms to compare and align networks and simulation and modeling techniques. Looking towards the future, we will discuss work on integrating additional functional information with biological networks, such as three dimensional structures and the complex environment of the cell. Combining and understanding this information requires development of novel algorithms and data integration techniques and solving these difficult computational problems will advance both computational and biological research.

MSC:

92C42 Systems biology, networks
92-02 Research exposition (monographs, survey articles) pertaining to biology
Full Text: DOI

References:

[1] Ideker, T.; Galitski, T.; Hood, L., A new approach to decoding life: Systems biology, Annu. Rev. Genom. Hum. Genet., 2, 343-372 (2001)
[2] Kitano, H., Systems biology: A brief overview, Science, 295, 5560, 1662-1664 (2002)
[3] Oltvai, Z. N.; Barabási, A. L., Systems biology. Life’s complexity pyramid, Science, 298, 5594, 763-764 (2002)
[4] Aderem, A., Systems biology: Its practice and challenges, Cell, 121, 511-513 (2005)
[5] Trewavas, A., A brief history of systems biology, Plant. Cell., 18, 10, 2420-2430 (2006)
[6] G.D. Bader, M.P. Cary, C. Sander, Pathguide: a pathway resource list, Nucleic. Acids. Res. 34 (Database issue) (2006) D504-D506, doi:10.1093/nar/gkj126http://pathguide.org; G.D. Bader, M.P. Cary, C. Sander, Pathguide: a pathway resource list, Nucleic. Acids. Res. 34 (Database issue) (2006) D504-D506, doi:10.1093/nar/gkj126http://pathguide.org
[7] Kanehisa, M.; Araki, M.; Goto, S.; Hattori, M.; Hirakawa, M.; Itoh, M.; Katayama, T.; Kawashima, S.; Okuda, S.; Tokimatsu, T.; Yamanishi, Y., Kegg for linking genomes to life and the environment, Nucleic Acids Res., 36, Database issue, D480-D484 (2008)
[8] Caspi, R.; Foerster, H.; Fulcher, C. A.; Kaipa, P.; Krummenacker, M.; Latendresse, M.; Paley, S.; Rhee, S. Y.; Shearer, A. G.; Tissier, C.; Walk, T. C.; Zhang, P.; Karp, P. D., The metacyc database of metabolic pathways and enzymes and the biocyc collection of pathway/genome databases, Nucleic Acids Res., 36, Database issue, D623-D631 (2008)
[9] Karp, P. D.; Ouzounis, C. A.; Kochlacs, C. M.; Goldovsky, L.; Kaipa, P.; Ahren, D.; Tsoka, S.; Darzentas, N.; Kunin, V.; Bigas, N. L., Expansion of the biocyc collection of pathway/genome databases to 160 genomes, Nucleic Acids Res., 33, 19, 6083-6089 (2005)
[10] Kanehisa, M.; Goto, S.; Kawashima, S.; Nakaya, A., The kegg databases at genomenet, Nucleic Acids Res., 30, 1, 42-46 (2002), URL: http://www.genome.ad.jp/kegg/
[11] Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N. S.; Wang, J. T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T., Cytoscape: A software environment for integrated models of biomolecular interaction networks, Genome. Res., 13, 11, 2498-2504 (2003), URL: http://cytoscape.org/
[12] Science signaling: Signal transduction knowledge environment. URL: http://stke.sciencemag.org; Science signaling: Signal transduction knowledge environment. URL: http://stke.sciencemag.org
[13] Pathway interaction database. URL: http://pid.nci.nih.gov; Pathway interaction database. URL: http://pid.nci.nih.gov
[14] Elkon, R.; Vesterman, R.; Amit, N.; Ulitsky, I.; Zohar, I.; Weisz, M.; Mass, G.; Orlev, N.; Sternberg, G.; Blekhman, R.; Assa, J.; Shiloh, Y.; Shamir, R., Spike — A database, visualization and analysis tool of cellular signaling pathways, BMC Bioinform., 9, 1, 110 (2008), URL: http://www.cs.tau.ac.il/ spike
[15] Lee, T. I.; Rinaldi, N. J.; Robert, F.; Odom, D. T.; Joseph, Z. B.; Gerber, G. K.; Hannett, N. M.; Harbison, C. T.; Thompson, C. M.; Simon, I.; Zeitlinger, J.; Jennings, E. G.; Murray, H. L.; Gordon, B. D.; Ren, B.; Wyrick, J. J.; Tagne, J. B.; Volkert, T. L.; Fraenkel, E.; Gifford, D. K.; Young, R. A., Transcriptional regulatory networks in saccharomyces cerevisiae, Science, 298, 5594, 799-804 (2002), URL: http://web.wi.mit.edu/young/regulatory_network/
[16] Castro, S. G.; Jacinto, V. J.; Gil, M. P.; Zavaleta, A. S.; Monica; Moreira, B. C.; Salazar, J. S.; Rascado, L. M.; Flores, I. M.; Salgado, H.; Martinez, C. B.; Goodger, C. A.; Penagos, C. R.; Rios, J. M.; Morett, E.; Merino, E.; Huerta, A. M.; Quintanilla, L. T.; Vides, J. C., Regulondb (version 6.0): Gene regulation model of escherichia coli k-12 beyond transcription, active (experimental) annotated promoters and textpresso navigation, Nucleic Acids Res., 36, Database issue, D120-D124 (2008)
[17] Shoemaker, B. A.; Panchenko, A. R., Deciphering protein-protein interactions. part i. experimental techniques and databases, PLoS Comput. Biol., 3, 3, e42 (2007)
[18] von Mering, C.; Krause, R.; Snel, B.; Cornell, M.; Oliver, S. G.; Fields, S.; Bork, P., Comparative assessment of large-scale data sets of protein-protein interactions., Nature, 417, 6887, 399-403 (2002)
[19] Bader, J. S.; Chaudhuri, A.; Rothberg, J. M.; Chant, J., Gaining confidence in high-throughput protein interaction networks., Nat. Biotechnol., 22, 1, 78-85 (2004)
[20] Yu, H.; Braun, P.; Yildirim, M. A.; Lemmens, I.; Venkatesan, K.; Sahalie, J.; Hirozane-Kishikawa, T.; Gebreab, F.; Li, N.; Simonis, N.; Hao, T.; Rual, J.-F.; Dricot, A.; Vazquez, A.; Murray, R. R.; Simon, C.; Tardivo, L.; Tam, S.; Svrzikapa, N.; Fan, C.; de Smet, A.-S.; Motyl, A.; Hudson, M. E.; Park, J.; Xin, X.; Cusick, M. E.; Moore, T.; Boone, C.; Snyder, M.; Roth, F. P.; Barabasi, A.-L.; Tavernier, J.; Hill, D. E.; Vidal, M., High-quality binary protein interaction map of the yeast interactome network, Science, 322, 5898, 104-110 (2008)
[21] The international molecular exchange consortium. URL: http://imex.sourceforge.net; The international molecular exchange consortium. URL: http://imex.sourceforge.net
[22] Salwinski, L.; Miller, C. S.; Smith, A. J.; Pettit, F. K.; Bowie, J. U.; Eisenberg, D., The database of interacting proteins: 2004 update, Nucleic Acids Res., 32, Database issue, D449-D451 (2004)
[23] Kerrien, S.; Alam-Faruque, Y.; Aranda, B.; Bancarz, I.; Bridge, A.; Derow, C.; Dimmer, E.; Feuermann, M.; Friedrichsen, A.; Huntley, R.; Kohler, C.; Khadake, J.; Leroy, C.; Liban, A.; Lieftink, C.; Montecchi-Palazzi, L.; Orchard, S.; Risse, J.; Robbe, K.; Roechert, B.; Thorneycroft, D.; Zhang, Y.; Apweiler, R.; Hermjakob, H., Intact-open source resource for molecular interaction data, Nucleic Acids Res., 35, Database issue, D561-D565 (2007), URL: http://www.ebi.ac.uk/intact
[24] Aryamontri, A. C.; Ceol, A.; Palazzi, L. M.; Nardelli, G.; Schneider, M. V.; Castagnoli, L.; Cesareni, G., Mint: the molecular interaction database, Nucleic Acids Res., 35, Database issue, D572-D574 (2007), URL: http://mint.bio.uniroma2.it/mint/
[25] U. Güldener, M. Münsterkötter, M. Oesterheld, P. Pagel, A. Ruepp, H.W. Mewes, V. Stümpflen, Mpact: the mips protein interaction resource on yeast, Nucleic Acids Res. 34 (Database issue), doi:10.1093/nar/gkj003http://mips.gsf.de/genre/proj/mpact; U. Güldener, M. Münsterkötter, M. Oesterheld, P. Pagel, A. Ruepp, H.W. Mewes, V. Stümpflen, Mpact: the mips protein interaction resource on yeast, Nucleic Acids Res. 34 (Database issue), doi:10.1093/nar/gkj003http://mips.gsf.de/genre/proj/mpact
[26] C. Stark, B.J. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz, M. Tyers, Biogrid: A general repository for interaction datasets, Nucleic Acids Res 34 (Database issue), doi:10.1093/nar/gkj109http://www.thebiogrid.org; C. Stark, B.J. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz, M. Tyers, Biogrid: A general repository for interaction datasets, Nucleic Acids Res 34 (Database issue), doi:10.1093/nar/gkj109http://www.thebiogrid.org
[27] Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E., The protein data bank., Nucleic Acids Res., 28, 1, 235-242 (2000), URL: http://www.pdb.org
[28] Mathivanan, S.; Periaswamy, B.; Gandhi, T. K.B.; Kandasamy, K.; Suresh, S.; Mohmood, R.; Ramachandra, Y. L.; Pandey, A., An evaluation of human protein-protein interaction data in the public domain, BMC Bioinform., 7, Suppl. 5, S19 (2006)
[29] Jensen, L. J.; Kuhn, M.; Stark, M.; Chaffron, S.; Creevey, C.; Muller, J.; Doerks, T.; Julien, P.; Roth, A.; Simonovic, M.; Bork, P.; Mering, C., String 8-a global view on proteins and their functional interactions in 630 organisms, Nucleic Acids Res., 37, Database issue, D412-D416 (2008), URL http://string-db.org/
[30] von Mering, C.; Jensen, L. J.; Kuhn, M.; Chaffron, S.; Doerks, T.; Kruger, B.; Snel, B.; Bork, P., String 7-recent developments in the integration and prediction of protein interactions, Nucleic Acids Res., 35, Database issue, D358-D362 (2007)
[31] Prasad, K. T.S.; Goel, R.; Kandasamy, K.; Keerthikumar, S.; Kumar, S.; Mathivanan, S.; Telikicherla, D.; Raju, R.; Shafreen, B.; Venugopal, A.; Balakrishnan, L.; Marimuthu, A.; Banerjee, S.; Somanathan, D. S.; Sebastian, A.; Rani, S.; Ray, S.; Kishore, H. C.J.; Kanth, S.; Ahmed, M.; Kashyap, M. K.; Mohmood, R.; Ramachandra, Y. L.; Krishna, V.; Rahiman, A. B.; Mohan, S.; Ranganathan, P.; Ramabadran, S.; Chaerkady, R.; Pandey, A., Human protein reference database-2009 update, Nucleic Acids Res., 37, Database issue, D767-D772 (2008), URL: http://www.hprd.org/
[32] Klipp, E.; Liebermeister, W.; Helbig, A.; Kowald, A.; Schaber, J., Systems biology standards the community speaks, Nat. Biotechnol., 25, 4, 390-391 (2007)
[33] Hucka, M.; Finney, A.; Sauro, H. M.; Bolouri, H.; Doyle, J. C.; Kitano, H.; The; Arkin, A. P.; Bornstein, B. J.; Bray, D.; Bowden, C. A.; Cuellar, A. A.; Dronov, S.; Gilles, E. D.; Ginkel, M.; Gor, V.; Goryanin, I. I.; Hedley, W. J.; Hodgman, T. C.; Hofmeyr, J. H.; Hunter, P. J.; Juty, N. S.; Kasberger, J. L.; Kremling, A.; Kummer, U.; Le Novere, N.; Loew, L. M.; Lucio, D.; Mendes, P.; Minch, E.; Mjolsness, E. D.; Nakayama, Y.; Nelson, M. R.; Nielsen, P. F.; Sakurada, T.; Schaff, J. C.; Shapiro, B. E.; Shimizu, T. S.; Spence, H. D.; Stelling, J.; Takahashi, K.; Tomita, M.; Wagner, J.; Wang, J., The systems biology markup language (sbml): A medium for representation and exchange of biochemical network models, Bioinformatics, 19, 4, 524-531 (2003), URL: http://www.sbml.org/
[34] Garny, A.; Nickerson, D. P.P.; Cooper, J.; Santos, R. W.D. W.; Miller, A. K.K.; McKeever, S.; Nielsen, P. M. F. M.; Hunter, P. J.J., Cellml and associated tools and techniques, Philos. Trans. Ser. A, Math. Phys. Eng. Sci., 366, 1878, 3017-3043 (2008), URL: http://www.cellml.org/
[35] Biopax, URL: http://www.biopax.org; Biopax, URL: http://www.biopax.org
[36] Extensible markup language (xml), URL: http://www.w3.org/XML/; Extensible markup language (xml), URL: http://www.w3.org/XML/
[37] I. Vastrik, P. D’Eustachio, E. Schmidt, G.J. Tope, G. Gopinath, D. Croft, B. de Bono, M. Gillespie, B. Jassal, S. Lewis, L. Matthews, G. Wu, E. Birney, L. Stein, Reactome: A knowledge base of biologic pathways and processes, Genome Biol. 8 (R39), doi:10.1186/gb-2007-8-3-r39; I. Vastrik, P. D’Eustachio, E. Schmidt, G.J. Tope, G. Gopinath, D. Croft, B. de Bono, M. Gillespie, B. Jassal, S. Lewis, L. Matthews, G. Wu, E. Birney, L. Stein, Reactome: A knowledge base of biologic pathways and processes, Genome Biol. 8 (R39), doi:10.1186/gb-2007-8-3-r39
[38] Lloyd, C. M.M.; Lawson, J. R.R.; Hunter, P. J.J.; Nielsen, P. F.F., The cellml model repository, Bioinformatics, 24, 18, 2122-2123 (2008), URL: http://www.cellml.org/models
[39] Le Novère, N.; Bornstein, B.; Broicher, A.; Courtot, M.; Donizelli, M.; Dharuri, H.; Li, L.; Sauro, H.; Schilstra, M.; Shapiro, B.; Snoep, J. L.; Hucka, M., Biomodels database: A free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems, Nucleic Acids Res., 34, Database issue, D689-D691 (2006), URL: http://www.ebi.ac.uk/biomodels/
[40] A.R. Pico, T. Kelder, M.P. van Iersel, K. Hanspers, B.R. Conklin, C. Evelo, Wikipathways: Pathway editing for the people, PLoS Biol. 6, doi:10.1371/journal.pbio.0060184http://wikipathways.org/; A.R. Pico, T. Kelder, M.P. van Iersel, K. Hanspers, B.R. Conklin, C. Evelo, Wikipathways: Pathway editing for the people, PLoS Biol. 6, doi:10.1371/journal.pbio.0060184http://wikipathways.org/
[41] Pathway commons, URL: http://www.pathwaycommons.org; Pathway commons, URL: http://www.pathwaycommons.org
[42] Erdős, P.; Rényi, A., On random graphs, Publicationes Math. Debrecen, 6, 290-297 (1959) · Zbl 0092.15705
[43] Jeong, H.; Tombor, B.; Albert, R.; Oltvai, Z. N.; Barabasi, A. L., The large-scale organization of metabolic networks, Nature, 407, 651-654 (2000)
[44] Barabási, A. L.; Albert, R., Emergence of scaling in random networks, Science, 286, 5439, 509-512 (1999) · Zbl 1226.05223
[45] Albert, R.; Barabási, A. L., Statistical mechanics of complex networks, Rev. Modern Phys., 74, 1, 47-97 (2002) · Zbl 1205.82086
[46] Albert, R., Scale-free networks in cell biology, J. Cell Sci., 118, 4947-4957 (2005)
[47] Barabasi, A. L.; Oltvai, Z. N., Network biology: Understanding the cell’s functional organization, Nat. Rev. Genet., 5, 101-113 (2004)
[48] Strogatz, S. H., Exploring complex networks, Nature, 410, 268-276 (2001) · Zbl 1370.90052
[49] V. Lacroix, L. Cottret, P. Thébault, M.F. Sagot, An introduction to metabolic networks and their structural analysis, IEEE/ACM Trans. Comput. Biol. Bioinform. 28; V. Lacroix, L. Cottret, P. Thébault, M.F. Sagot, An introduction to metabolic networks and their structural analysis, IEEE/ACM Trans. Comput. Biol. Bioinform. 28
[50] Stumpf, M. P.H.; Wiuf, C.; Robert, Subnets of scale-free networks are not scale-free: Sampling properties of networks, Proc. Natl. Acad. Sci., 102, 12, 4221-4224 (2005)
[51] Han, J.-D. J.; Dupuy, D.; Bertin, N.; Cusick, M. E.; Vidal, M., Effect of sampling on topology predictions of protein-protein interaction networks, Nat. Biotechnol., 23, 7, 839-844 (2005)
[52] Przulj, N.; Corneil, D. G.; Jurisica, I., Modeling interactome: scale-free or geometric?, Bioinformatics, 20, 18, 3508-3515 (2004)
[53] Arita, M., The metabolic world of escherichia coli is not small, Proc. Natl. Acad. Sci., 101, 6, 1543-1547 (2004)
[54] Keller, E. F., Revisiting “scale-free” networks, BioEssays, 27, 10, 1060-1068 (2005)
[55] Arita, M., Scale-freeness and biological networks, J. Biochem., 138, 1, 1-4 (2005)
[56] Milo, R.; Orr, S. S.; Itzkovitz, S.; Kashtan, N.; Chklovskii, D.; Alon, U., Network motifs: Simple building blocks of complex networks, Science, 298, 824-827 (2002)
[57] Milo, Shai R.; Mangan, S.; Alon, U., Network motifs in the transcriptional regulation network of Escherichia coli, Nat. Genet., 31, 64-68 (2002)
[58] Albert, I.; Albert, R., Conserved network motifs allow protein-protein interaction prediction, Bioinformatics, 20, 18, 3346-3352 (2004)
[59] Vespignani, A., Evolution thinks modular, Nat. Genet., 35, 2, 118-119 (2003)
[60] Wuchty, S.; Oltvai, Z. N.; Barabasi, A. L., Evolutionary conservation of motif constituents in the yeast protein interaction network, Nat. Genet., 35, 2, 176-179 (2003)
[61] Conant, G. C.; Wagner, A., Convergent evolution of gene circuits, Nat. Genet., 34, 264-266 (2003)
[62] Schreiber, F.; Schwöbbermeyer, H., Frequency concepts and pattern detection for the analysis of motifs in networks, Trans. Comput. Syst. Biol. III, 3737, 89-104 (2005) · Zbl 1151.92301
[63] Ciriello, G.; Guerra, C., A review on models and algorithms for motif discovery in protein-protein interaction networks, Brief Funct Genomic Proteomic, 7, 2, 147-156 (2008)
[64] Baskerville, K.; Paczuski, M., Subgraph ensembles and motif discovery using an alternative heuristic for graph isomorphism, Phys. Rev. E, 74, 051903-11 (2006)
[65] Kashtan, N.; Itzkovitz, S.; Milo, R.; Alon, U., Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs, Bioinformatics, 20, 11, 1746-1758 (2004)
[66] Wernicke, S.; Rasche, F., Simple and fast alignment of metabolic pathways by exploiting local diversity, Bioinformatics, 23, 15, 1978-1985 (2007)
[67] Chen, J.; Hsu, W.; Lee, M. L.; Ng, S. K., Nemofinder: Dissecting Genome-wide Protein-protein Interactions with Meso-scale Network Motifs, (Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data mining (2006)), 106-115
[68] Ziv, E.; Koytcheff, R.; Middendorf, M.; Wiggins, C., Systematic identification of statistically significant network measures, Phys. Rev. E, 71, 4453, 016110-8 (2005)
[69] Grochow, J.; Kellis, M., Network motif discovery using subgraph enumeration and symmetry-breaking, Res. Comput. Mol. Biol., 4453, 92-106 (2007)
[70] Newman, M. E.J., The structure and function of complex networks, SIAM Rev., 45, 2, 167-256 (2003) · Zbl 1029.68010
[71] Randrup, Y. A.; Fleishman, S. J.; Tal, N. B.; Stone, L., Comment on “network motifs: Simple building blocks of complex networks” and “superfamilies of evolved and designed networks”, Science, 305, 5687 (2004)
[72] Altschul, S. F.; Gish, W.; Miller, W.; Myers, E. W.; Lipman, D. J., Basic local alignment search tool, J. Mol. Biol., 215, 3, 403-410 (1990)
[73] Cesareni, G.; Ceol, A.; Gavrila, C.; Palazzi, L. M.; Persico, M.; Schneider, M. V., Comparative interactomics, FEBS Lett., 579, 8, 1828-1833 (2005)
[74] Pinter, R. Y.; Rokhlenko, O.; Yeger-Lotem, E.; Ziv-Ukelson, M., Alignment of metabolic pathways, Bioinformatics, 21, 16, 3401-3408 (2005)
[75] Sharan, R.; Ideker, T., Modeling cellular machinery through biological network comparison, Nat. Biotechnol., 24, 4, 427-433 (2006)
[76] Kelley, B. P.; Sharan, R.; Karp, R. M.; Sittler, T.; Root, D. E.; Stockwell, B. R.; Ideker, T., Conserved pathways within bacteria and yeast as revealed by global protein network alignment, Proc. Natl. Acad. Sci., 100, 20, 11394-11399 (2003)
[77] Sharan, R.; Suthram, S.; Kelley, R. M.; Kuhn, T.; Mccuine, S.; Uetz, P.; Sittler, T.; Karp, R. M.; Ideker, T., Conserved patterns of protein interaction in multiple species, Proc. Natl. Acad. Sci., 102, 1974-1979 (2005)
[78] Flannick, J.; Novak, A.; Srinivasan, B. S.; Mcadams, H. H.; Batzoglou, S., Graemlin: General and robust alignment of multiple large interaction networks, Genome. Res., 16, 1169-1181 (2006)
[79] Yang, Q.; Sze, S. H., Path matching and graph matching in biological networks, J. Comput. Biol., 14, 1, 56-67 (2007)
[80] Turing, A. M., The chemical basis of morphogenesis, Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci., 237, 641, 37-72 (1952) · Zbl 1403.92034
[81] Alves, R.; Antunes, F.; Salvador, A., Tools for kinetic modeling of biochemical networks, Nat. Biotechnol., 24, 6, 667-672 (2006)
[82] Hoops, S.; Sahle, S.; Gauges, R.; Lee, C.; Pahle, J.; Simus, N.; Singhal, M.; Xu, L.; Mendes, P.; Kummer, U., Copasia complex pathway simulator, Bioinformatics, 22, 24, 3067-3074 (2006)
[83] Ramsey, S.; Orrell, D.; Bolouri, H., Dizzy: Stochastic simulation of large-scale genetic regulatory networks., J. Bioinform. Comput. Biol., 3, 2, 415-436 (2005)
[84] Pettinen, A.; Aho, T.; Smolander, O.-P.; Manninen, T.; Saarinen, A.; Taattola, K.-L.; Yli-Harja, O.; Linne, M.-L., Simulation tools for biochemical networks: evaluation of performance and usability, Bioinformatics, 21, 3, 357-363 (2005)
[85] G. Karlebach, R. Shamir, Modelling and analysis of gene regulatory networks, Nat. Rev. Mol. Cell. Biol. 9, doi:10.1038/nrm2503; G. Karlebach, R. Shamir, Modelling and analysis of gene regulatory networks, Nat. Rev. Mol. Cell. Biol. 9, doi:10.1038/nrm2503
[86] de Jong, H., Modeling and simulation of genetic regulatory systems: a literature review., J. Comput. Biol., 9, 1, 67-103 (2002)
[87] Gilbert, D.; Fuß, H.; Gu, X.; Orton, R.; Robinson, S.; Vyshemirsky, V.; Kurth, M. J.J.; Downes, C. S.S.; Dubitzky, W., Computational methodologies for modelling, analysis and simulation of signalling networks, Brief. Bioinform., 7, 4, 339-353 (2006)
[88] Papin, J. A.; Stelling, J.; Price, N. D.; Klamt, S.; Schuster, S.; Palsson, B. O., Comparison of network-based pathway analysis methods, Trends Biotechnol., 22, 8, 400-405 (2004)
[89] Papin, J. A.; Price, N. D.; Wiback, S. J.; Fell, D. A.; Palsson, B. O., Metabolic pathways in the post-genome era, Trends Biochem. Sci., 28, 5, 250-258 (2003)
[90] Kauffman, S. A., Metabolic stability and epigenesis in randomly constructed genetic nets, J. Theoret. Biol., 22, 3, 437-467 (1969)
[91] Chaves, M.; Albert, R.; Sontag, E. D., Robustness and fragility of boolean models for genetic regulatory networks, J. Theoret. Biol., 235, 3, 431-449 (2005) · Zbl 1445.92173
[92] A. Fauré, A. Naldi, C. Chaouiya, D. Thieffry, Dynamical analysis of a generic boolean model for the control of the mammalian cell cycle, Bioinformatics 22 (14), doi:10.1093/bioinformatics/btl210; A. Fauré, A. Naldi, C. Chaouiya, D. Thieffry, Dynamical analysis of a generic boolean model for the control of the mammalian cell cycle, Bioinformatics 22 (14), doi:10.1093/bioinformatics/btl210
[93] Garg, A.; Dicara, A.; Xenarios, I.; Mendoza, L.; Micheli, G. D.D., Synchronous vs. asynchronous modeling of gene regulatory networks, Bioinformatics, 24, 17, 1917-1925 (2008)
[94] Shmulevich, I.; Dougherty, E. R.; Kim, S.; Zhang, W., Probabilistic boolean networks: A rule-based uncertainty model for gene regulatory networks, Bioinformatics, 18, 2, 261-274 (2002)
[95] Kauffman, S.; Peterson, C.; Samuelsson, B.; Troein, C., Random boolean network models and the yeast transcriptional network, Proc. Natl Acad. Sci. USA, 100, 25, 14796-14799 (2003)
[96] Zhang, R.; Shah, M. V.; Yang, J.; Nyland, S. B.; Liu, X.; Yun, J. K.; Albert, R.; Loughran, T. P., Network model of survival signaling in large granular lymphocyte leukemia, Proc. Natl Acad. Sci., 105, 42, 16308-16313 (2008)
[97] Li, F.; Long, T.; Lu, Y.; Ouyang, Q.; Tang, C., The yeast cell-cycle network is robustly designed, Proc. Natl. Acad. Sci., 101, 14, 4781-4786 (2004)
[98] Klamt, S.; Saez-Rodriguez, J.; Lindquist, J. A.; Simeoni, L.; Gilles, E. D., A methodology for the structural and functional analysis of signaling and regulatory networks, BMC Bioinform., 7, 1 (2006)
[99] Li, S.; Assmann, S. M.; Albert, R., Predicting essential components of signal transduction networks: A dynamic model of guard cell abscisic acid signaling, PLoS Biol., 4, 10, e312 (2006)
[100] C.A. Petri, Kommunikation mit Automaten, Ph.D. Thesis, Institut für instrumentelle Mathematik, Bonn, 1962; C.A. Petri, Kommunikation mit Automaten, Ph.D. Thesis, Institut für instrumentelle Mathematik, Bonn, 1962
[101] Murata, T., Petri nets: Properties, analysis and applications, Proc. IEEE, 77, 4, 541-580 (1989)
[102] Kristensen, L. M.; Christensen, S.; Jensen, K., The practitioners guide to coloured petri nets, Internat. J. Softw. Tools Technol. Transfer (STTT), 2, 2, 98-132 (1998) · Zbl 1033.68590
[103] Jensen, K., (Coloured petri nets. Coloured petri nets, Petri Nets: Central Models and their Properties, vol. 254 (1987)), 248-299 · Zbl 0632.68058
[104] Balbo, G., (Introduction to generalized stochastic petri nets. Introduction to generalized stochastic petri nets, Formal Methods for Performance Evaluation, vol. 4486 (2009)), 83-131 · Zbl 1323.68400
[105] Bause, F.; Kritzinger, P. S., Stochastic petri nets: An introduction to the theory, SIGMETRICS Perform. Eval. Rev., 26, 2, 2-3 (1998)
[106] Alla, H.; David, R., Continuous and hybrid petri nets, J. Circuits Syst. Comput., 8, 1, 159-188 (1998)
[107] Matsuno, H.; Tanaka, Y.; Aoshima, H.; Doi, A.; Matsui, M.; Miyano, S., Biopathways representation and simulation on hybrid functional petri net, In Silico. Biol., 3, 3, 389-404 (2003)
[108] Ruths, D.; Muller, M.; Tseng, J. T.; Nakhleh, L.; Ram, P. T., The signaling petri net-based simulator: A non-parametric strategy for characterizing the dynamics of cell-specific signaling networks, PLoS Comput. Biol., 4, 2 (2008)
[109] Simão, E.; Remy, E.; Thieffry, D.; Chaouiya, C., Qualitative modelling of regulated metabolic pathways: application to the tryptophan biosynthesis in E. coli, Bioinformatics, 21, Suppl 2, 190-196 (2005)
[110] Koch, I.; Junker, B. H.; Heiner, M., Application of petri net theory for modelling and validation of the sucrose breakdown pathway in the potato tuber, Bioinformatics, 21, 7, 1219-1226 (2005)
[111] Küffner, R.; Zimmer, R.; Lengauer, T., Pathway analysis in metabolic databases via differential metabolic display (dmd), Bioinformatics, 16, 9, 825-836 (2000)
[112] Oancea, Z. I.; Schuster, S., Topological analysis of metabolic networks based on petri net theory, In Silico. Biol., 3, 3, 323-345 (2003)
[113] Chen, M.; Hofestädt, R., Quantitative petri net model of gene regulated metabolic networks in the cell, In Silico. Biol., 3, 3, 347-365 (2003)
[114] Voss, K.; Heiner, M.; Koch, I., Steady state analysis of metabolic pathways using petri nets, In Silico. Biol., 3, 3, 367-387 (2003)
[115] Kielbassa, J.; Bortfeldt, R.; Schuster, S.; Koch, I., Modeling of the u1 snrnp assembly pathway in alternative splicing in human cells using petri nets, Comput. Biol. Chem., 33, 1, 46-61 (2008) · Zbl 1158.92016
[116] Steggles, L. J.; Banks, R.; Shaw, O.; Wipat, A., Qualitatively modelling and analysing genetic regulatory networks: A petri net approach, Bioinformatics, 23, 3, 336-343 (2007)
[117] Matsuno, H.; Doi, A.; Nagasaki, M.; Miyano, S., Hybrid petri net representation of gene regulatory network, Pac. Symp. Biocomput., 341-352 (2000)
[118] Sackmann, A.; Heiner, M.; Koch, I., Application of petri net based analysis techniques to signal transduction pathways, BMC Bioinform., 7, 1, 482 (2006)
[119] Li, C.; Suzuki, S.; Ge, Q. W.; Nakata, M.; Matsuno, H.; Miyano, S., Structural modeling and analysis of signaling pathways based on petri nets, J. Bioinform. Comput. Biol., 4, 5, 1119-1140 (2006)
[120] Igarashi, T. T., Ontology based standardization of petri net modeling for signaling pathways, In Silico. Biol., 5 (2005), 0047
[121] David, R.; Alla, H., Discrete, Continuous, and Hybrid Petri Nets (2004), Springer
[122] Chaouiya, C., Petri net modelling of biological networks, Brief Bioinform., 8, 4, 210-219 (2007)
[123] Peleg, M.; Rubin, D.; Altman, R. B., Using petri net tools to study properties and dynamics of biological systems, J. Am. Med. Inform. Assoc., 12, 2, 181-199 (2005)
[124] Hardy, S.; Robillard, P. N., Modeling and simulation of molecular biology systems using petri nets: modeling goals of various approaches, J. Bioinform. Comput. Biol., 2, 4, 595-613 (2004)
[125] Pinney, J. W.; Westhead, D. R.; Mcconkey, G. A., Petri net representations in systems biology, Biochem. Soc. Trans., 31, Pt 6, 1513-1515 (2003)
[126] Klipp, E.; Herwig, R.; Kowald, A.; Wierling, C.; Lehrach, H., Systems biology in practice: Concepts, implementation and application (2005), Wiley-VCH
[127] de Jong, H.; Ropers, D., Strategies for dealing with incomplete information in the modeling of molecular interaction networks, Brief. Bioinform., 7, 4, 354-363 (2006)
[128] Teusink, B.; Passarge, J.; Reijenga, C. A.; Esgalhado, E.; van der Weijden, C. C.; Schepper, M.; Walsh, M. C.; Bakker, B. M.; van Dam, K.; Westerhoff, H. V.; Snoep, J. L., Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? testing biochemistry, European J. Biochem., 267, 17, 5313-5329 (2000)
[129] Borisuk, M., Bifurcation analysis of a model of mitotic control in frog eggs, J. Theoret. Biol., 195, 1, 69-85 (1998)
[130] Chen, K. C.; Csikasz-Nagy, A.; Gyorffy, B.; Val, J.; Novak, B.; Tyson, J. J., Kinetic analysis of a molecular model of the budding yeast cell cycle, Mol. Biol. Cell, 11, 1, 369-391 (2000)
[131] Csikasz-Nagy, A.; Battogtokh, D.; Chen, K. C.; Novak, B.; Tyson, J. J., Analysis of a generic model of eukaryotic cell-cycle regulation, Biophys. J., 90, 12, 4361-4379 (2006)
[132] Blake, W. J.; Balazsi, G.; Kohanski, M. A.; Isaacs, F. J.; Murphy, K. F.; Kuang, Y.; Cantor, C. R.; Walt, D. R.; Collins, J. J., Phenotypic consequences of promoter-mediated transcriptional noise, Molecular Cell, 24, 853-865 (2006)
[133] Raser, J. M.; O’Shea, E. K., Control of stochasticity in eukaryotic gene expression, Science, 304, 5678, 1811-1814 (2004)
[134] Blake, W. J.; Kaern, M.; Cantor, C. R.; Collins, J. J., Noise in eukaryotic gene expression, Nature, 422, 633-637 (2003)
[135] Mcadams, H.; Arkin, A., Stochastic mechanisms in gene expression, Proc. Natl. Acad. Sci., 94, 3, 814-819 (1997)
[136] Rao, C. V.; Wolf, D. M.; Arkin, A. P., Control, exploitation and tolerance of intracellular noise, Nature, 420, 6912, 231-237 (2002)
[137] Mcadams, H. H.; Arkin, A., It’s a noisy business! genetic regulation at the nanomolar scale, Trends Genet., 15, 2, 65-69 (1999)
[138] Gillespie, D. T., A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys., 22, 4, 403-434 (1976)
[139] Gillespie, D. T., Stochastic simulation of chemical kinetics, Annu. Rev. Phys. Chem., 58, 35-55 (2007)
[140] Salwinski, L.; Eisenberg, D., In silico simulation of biological network dynamics, Nat. Biotech., 22, 8, 1017-1019 (2004)
[141] Kaznessis, Y., Multi-scale models for gene network engineering, Chem. Eng. Sci., 61, 3, 940-953 (2006)
[142] Henzinger, T. A., The theory of hybrid automata, (Proceedings, Eleventh Annual IEEE Symposium on Logic in Computer Science (LICS) (1996)), 278-292 · Zbl 0959.68073
[143] Alur, R.; Courcoubetis, C.; Halbwachs, N.; Henzinger, T. A.; Ho; Nicollin, X.; Olivero, A.; Sifakis, J.; Yovine, S., The algorithmic analysis of hybrid systems, Theoret. Comput. Sci., 138, 1, 3-34 (1995) · Zbl 0874.68206
[144] Lincoln, P.; Tiwari, A., Symbolic systems biology: Hybrid modeling and analysis of biological networks, Hybrid Syst.: Comput. Control, 2993, 147-165 (2004)
[145] A. Casagrande, C. Piazza, A. Policriti, Discreteness, hybrid automata, and biology, in: 9th International Workshop on Discrete Event Systems (WODES), 2008, pp. 281-286, doi:10.1109/WODES.2008.4605960; A. Casagrande, C. Piazza, A. Policriti, Discreteness, hybrid automata, and biology, in: 9th International Workshop on Discrete Event Systems (WODES), 2008, pp. 281-286, doi:10.1109/WODES.2008.4605960
[146] Piazza, C.; Antoniotti, M.; Mysore, V.; Policriti, A.; Winkler, F.; Mishra, B., Algorithmic algebraic model checking, in: Challenges from Systems Biology, Comput. Aided Verif., 5-19 (2005) · Zbl 1081.68056
[147] Fisher, J.; Henzinger, T. A., Executable cell biology, Nat. Biotech., 25, 11, 1239-1249 (2007)
[148] Santillán, M.; Mackey, M. C., Quantitative approaches to the study of bistability in the lac operon of escherichia coli, J. Roy. Soc., Interface/the Royal Society, 5, Suppl. 1 (2008)
[149] Müller-Hill, B., The lac operon: A short history of a genetic paradigm (1996), Walter de Gruyter
[150] Halasz, A.; Kumar, V.; Imielinski, M.; Belta, C.; Sokolsky, O.; Pathak, S.; Rubin, H., Analysis of lactose metabolism in E. coli using reachability analysis of hybrid systems, IET Syst. Biol., 1, 2, 130-148 (2007)
[151] Ghosh, R.; Tiwari, A.; Tomlin, C., Automated symbolic reachability analysis; with application to delta-notch signaling automata, Hybrid Syst.: Comput. Control, 2623, 233-248 (2003) · Zbl 1032.92500
[152] Ghosh, R.; Tomlin, C., Symbolic reachable set computation of piecewise affine hybrid automata and its application to biological modelling: Delta-notch protein signalling, Syst. Biol., 1, 1, 170-183 (2004)
[153] Belta, C.; Finin, P.; Habets, L. C.; Halász, A. M.; Imielinski, M.; Kumar, V. R.; Rubin, H., Understanding the bacterial stringent response using reachability analysis of hybrid systems, Hybrid Syst.: Comput. Control, 2993, 107-116 (2004) · Zbl 1135.93334
[154] Drulhe, S.; Ferrari-Trecate, G.; de Jong, H.; Viari, A., Reconstruction of switching thresholds in piecewise-affine models of genetic regulatory networks, Hybrid Syst.: Comput. Control, 3927, 184-199 (2006) · Zbl 1178.92024
[155] Batt, G.; Ropers, D.; de Jong, H.; Geiselmann, J.; Page, M.; Schneider, D., Qualitative analysis and verification of hybrid models of genetic regulatory networks: Nutritional stress response in Escherichia coli, Hybrid Syst.: Comput. Control, 3414, 134-150 (2005) · Zbl 1078.93555
[156] R. David, Modeling of hybrid systems using continuous and hybrid petri nets, in: Proceedings of the Seventh International Workshop on Petri Nets and Performance Models, 1997, pp. 47-58, doi:10.1109/PNPM.1997.595536; R. David, Modeling of hybrid systems using continuous and hybrid petri nets, in: Proceedings of the Seventh International Workshop on Petri Nets and Performance Models, 1997, pp. 47-58, doi:10.1109/PNPM.1997.595536
[157] S. Pettersson, B. Lennartson, Hybrid modelling focused on hybrid petri nets, in: 2nd European Workshop on Real-time and Hybrid systems, 1995, pp. 303-309; S. Pettersson, B. Lennartson, Hybrid modelling focused on hybrid petri nets, in: 2nd European Workshop on Real-time and Hybrid systems, 1995, pp. 303-309
[158] David, R.; Alla, H., Petri Nets and Grafcet: Tools for Modelling Discrete Event Systems (1992), Prentice Hall: Prentice Hall New York · Zbl 0810.68014
[159] Chandonia, J.-M.; Brenner, S. E., The impact of structural genomics: Expectations and outcomes, Science, 311, 5759, 347-351 (2006)
[160] Stein, M.; Gabdoulline, R. R.; Wade, R. C., Bridging from molecular simulation to biochemical networks, Curr. Opin. Struct. Biol., 17, 2, 166-172 (2007)
[161] Devos, D.; Russell, R. B.B., A more complete, complexed and structured interactome, Curr. Opin. Struct. Biol., 17, 3, 370-377 (2007)
[162] Beltrao, P.; Kiel, C.; Serrano, L., Structures in systems biology, Curr. Opin. Struct. Biol., 17, 3, 378-384 (2007)
[163] Aloy, P.; Russell, R. B., Structural systems biology: modelling protein interactions, Nat. Rev. Mol. Cell. Biol., 7, 188-197 (2006)
[164] Kim, P. M.; Lu, L. J.; Xia, Y.; Gerstein, M. B., Relating three-dimensional structures to protein networks provides evolutionary insights, Science, 314, 5807, 1938-1941 (2006)
[165] Fowlkes, C. C.; Hendriks, C. L.; Keränen, S. V.; Weber, G. H.; Rübel, O.; Huang, M. Y.; Chatoor, S.; DePace, A. H.; Simirenko, L.; Henriquez, C.; Beaton, A.; Weiszmann, R.; Celniker, S.; Hamann, B.; Knowles, D. W.; Biggin, M. D.; Eisen, M. B.; Malik, J., A quantitative spatiotemporal atlas of gene expression in the drosophila blastoderm, Cell, 133, 2, 364-374 (2008)
[166] Han, J.-D. J.; Bertin, N.; Hao, T.; Goldberg, D. S.; Berriz, G. F.; Zhang, L. V.; Dupuy, D.; Walhout, A. J.M.; Cusick, M. E.; Roth, F. P.; Vidal, M., Evidence for dynamically organized modularity in the yeast protein-protein interaction network, Nature, 430, 6995, 88-93 (2004)
[167] Goodwin, B. C.; Kauffman, S. A., Spatial harmonics and pattern specification in early drosophila development. Part i. bifurcation sequences and gene expression, J. Theoret. Biol., 144, 3, 303-319 (1990)
[168] Myers, C. L.; Troyanskaya, O. G., Context-sensitive data integration and prediction of biological networks, Bioinformatics, 23, 17, 2322-2330 (2007)
[169] Rachlin, J.; Cohen, D. D.; Cantor, C.; Kasif, S., Biological context networks: A mosaic view of the interactome, Mol. Syst. Biol. 2, 66 (2006)
[170] Chin, C.-S.; Chubukov, V.; Jolly, E. R.; Derisi, J.; Li, H., Dynamics and design principles of a basic regulatory architecture controlling metabolic pathways, PLoS Biol., 6, 6, e146+ (2008)
[171] Knijnenburg, T. A.; Wessels, L. F.A.; Reinders, M. J.T., Combinatorial influence of environmental parameters on transcription factor activity, Bioinformatics, 24, 13, i172-181 (2008)
[172] Spirin, V.; Gelfand, M. S.S.; Mironov, A. A.A.; Mirny, L. A.A., A metabolic network in the evolutionary context: Multiscale structure and modularity, Proc. Natl. Acad. Sci. USA, 103, 23, 8774-8779 (2006)
[173] Hwang, D.; Rust, A. G.G.; Ramsey, S.; Smith, J. J.J.; Leslie, D. M.M.; Weston, A. D.D.; de Atauri, P.; Aitchison, J. D.D.; Hood, L.; Siegel, A. F.F.; Bolouri, H., A data integration methodology for systems biology, Proc. Natl. Acad. Sci. USA, 102, 48, 17296-17301 (2005)
[174] Hwang, D.; Smith, J. J.; Leslie, D. M.; Weston, A. D.; Rust, A. G.; Ramsey, S.; de Atauri, P.; Siegel, A. F.; Bolouri, H.; Aitchison, J. D.; Hood, L., A data integration methodology for systems biology: Experimental verification, Proc. Natl. Acad. Sci., 102, 48, 17302-17307 (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.