×

Gauging the higher-spin-like symmetries by the Moyal product. (English) Zbl 1466.81057

Summary: We analyze a novel approach to gauging rigid higher derivative (higher spin) symmetries of free relativistic actions defined on flat spacetime, building on the formalism originally developed by L. Bonora et al. [J. High Energy Phys. 2016, No. 12, Paper No. 84, 70 p. (2016; Zbl 1390.83264) and J. High Energy Phys. 2018, No. 1, Paper No. 80, 40 p. (2018; Zbl 1384.83037)] in their studies of linear coupling of matter fields to an infinite tower of higher spin fields. The off-shell definition is based on fields defined on a \(2d\)-dimensional master space equipped with a symplectic structure, where the infinite dimensional Lie algebra of gauge transformations is given by the Moyal commutator. Using this algebra we construct well-defined weakly non-local actions, both in the gauge and the matter sector, by mimicking the Yang-Mills procedure. The theory allows for a description in terms of an infinite tower of higher spin spacetime fields only on-shell. Interestingly, Euclidean theory allows for such a description also off-shell. Owing to its formal similarity to non-commutative field theories, the formalism allows for the introduction of a covariant potential which plays the role of the generalised vielbein. This covariant formulation uncovers the existence of other phases and shows that the theory can be written in a matrix model form. The symmetries of the theory are analyzed and conserved currents are explicitly constructed. By studying the spin-2 sector we show that the emergent geometry is closely related to teleparallel geometry, in the sense that the induced linear connection is opposite to Weitzenböck’s.

MSC:

81T11 Higher spin theories
81T13 Yang-Mills and other gauge theories in quantum field theory
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C45 Quantization of the gravitational field
83C60 Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism
83C65 Methods of noncommutative geometry in general relativity

Software:

xAct; xTras

References:

[1] Hehl, FW; Obukhov, YN, Conservation of Energy-Momentum of Matter as the Basis for the Gauge Theory of Gravitation, Fundam. Theor. Phys., 199, 217 (2020) · doi:10.1007/978-3-030-51197-5_10
[2] Sorokin, D., Introduction to the classical theory of higher spins, AIP Conf. Proc., 767, 172 (2005) · Zbl 1096.81017 · doi:10.1063/1.1923335
[3] X. Bekaert, S. Cnockaert, C. Iazeolla and M.A. Vasiliev, Nonlinear higher spin theories in various dimensions, in 1st Solvay Workshop on Higher Spin Gauge Theories (2004) [hep-th/0503128] [INSPIRE].
[4] Bengtsson, AKH, Towards Unifying Structures in Higher Spin Gauge Symmetry, SIGMA, 4, 013 (2008) · Zbl 1188.70064
[5] V.E. Didenko and E.D. Skvortsov, Elements of Vasiliev theory, arXiv:1401.2975 [INSPIRE]. · Zbl 1342.81176
[6] R. Rahman and M. Taronna, From Higher Spins to Strings: A Primer, arXiv:1512.07932 [INSPIRE]. · Zbl 1359.81139
[7] Skvortsov, E.; Tran, T., One-loop Finiteness of Chiral Higher Spin Gravity, JHEP, 07, 021 (2020) · Zbl 1451.83071 · doi:10.1007/JHEP07(2020)021
[8] Skvortsov, E.; Tran, T.; Tsulaia, M., More on Quantum Chiral Higher Spin Gravity, Phys. Rev. D, 101, 106001 (2020) · doi:10.1103/PhysRevD.101.106001
[9] Ponomarev, D., Chiral Higher Spin Theories and Self-Duality, JHEP, 12, 141 (2017) · Zbl 1383.83127 · doi:10.1007/JHEP12(2017)141
[10] Berends, FA; Burgers, GJH; van Dam, H., On the Theoretical Problems in Constructing Interactions Involving Higher Spin Massless Particles, Nucl. Phys. B, 260, 295 (1985) · doi:10.1016/0550-3213(85)90074-4
[11] Ponomarev, D.; Skvortsov, ED, Light-Front Higher-Spin Theories in Flat Space, J. Phys. A, 50, 095401 (2017) · Zbl 1370.81154 · doi:10.1088/1751-8121/aa56e7
[12] Metsaev, RR, Poincaré invariant dynamics of massless higher spins: Fourth order analysis on mass shell, Mod. Phys. Lett. A, 6, 359 (1991) · Zbl 1021.81542 · doi:10.1142/S0217732391000348
[13] Taronna, M., On the Non-Local Obstruction to Interacting Higher Spins in Flat Space, JHEP, 05, 026 (2017) · Zbl 1380.83227 · doi:10.1007/JHEP05(2017)026
[14] Roiban, R.; Tseytlin, AA, On four-point interactions in massless higher spin theory in flat space, JHEP, 04, 139 (2017) · Zbl 1378.83007 · doi:10.1007/JHEP04(2017)139
[15] Bekaert, X.; Boulanger, N.; Sundell, P., How higher-spin gravity surpasses the spin two barrier: no-go theorems versus yes-go examples, Rev. Mod. Phys., 84, 987 (2012) · doi:10.1103/RevModPhys.84.987
[16] Vasiliev, MA, Consistent equation for interacting gauge fields of all spins in (3+1)-dimensions, Phys. Lett. B, 243, 378 (1990) · Zbl 1332.81084 · doi:10.1016/0370-2693(90)91400-6
[17] Vasiliev, MA, Properties of equations of motion of interacting gauge fields of all spins in (3+1)-dimensions, Class. Quant. Grav., 8, 1387 (1991) · doi:10.1088/0264-9381/8/7/014
[18] Vasiliev, MA, Algebraic aspects of the higher spin problem, Phys. Lett. B, 257, 111 (1991) · doi:10.1016/0370-2693(91)90867-P
[19] Vasiliev, MA, More on equations of motion for interacting massless fields of all spins in (3+1)-dimensions, Phys. Lett. B, 285, 225 (1992) · doi:10.1016/0370-2693(92)91457-K
[20] Sleight, C.; Taronna, M., Higher-Spin Gauge Theories and Bulk Locality, Phys. Rev. Lett., 121, 171604 (2018) · doi:10.1103/PhysRevLett.121.171604
[21] Bekaert, X.; Boulanger, N., On geometric equations and duality for free higher spins, Phys. Lett. B, 561, 183 (2003) · Zbl 1094.81523 · doi:10.1016/S0370-2693(03)00409-X
[22] Francia, D.; Mourad, J.; Sagnotti, A., Current Exchanges and Unconstrained Higher Spins, Nucl. Phys. B, 773, 203 (2007) · Zbl 1117.81335 · doi:10.1016/j.nuclphysb.2007.03.021
[23] Francia, D., Geometric Lagrangians for massive higher-spin fields, Nucl. Phys. B, 796, 77 (2008) · Zbl 1219.81187 · doi:10.1016/j.nuclphysb.2007.12.002
[24] A. Sagnotti, Higher Spins and Current Exchanges, PoSCORFU2011 (2011) 106 [arXiv:1002.3388] [INSPIRE]. · Zbl 1117.81335
[25] Campoleoni, A.; Francia, D., Maxwell-like Lagrangians for higher spins, JHEP, 03, 168 (2013) · Zbl 1342.81229 · doi:10.1007/JHEP03(2013)168
[26] Bonora, L.; Cvitan, M.; Dominis Prester, P.; Giaccari, S.; Lima de Souza, B.; Štemberga, T., One-loop effective actions and higher spins, JHEP, 12, 084 (2016) · Zbl 1390.83264 · doi:10.1007/JHEP12(2016)084
[27] L. Bonora, M. Cvitan, P. Dominis Prester, S. Giaccari and T. Štemberga, One-loop effective actions and higher spins. Part II, JHEP01 (2018) 080 [arXiv:1709.01738] [INSPIRE]. · Zbl 1406.81096
[28] L. Bonora, M. Cvitan, P. Dominis Prester, S. Giaccari and T. Štemberga, HS in flat spacetime. The effective action method, Eur. Phys. J. C79 (2019) 258 [arXiv:1811.04847] [INSPIRE]. · Zbl 1406.81096
[29] L. Bonora, M. Cvitan, P. Dominis Prester, S. Giaccari and T. Stemberga, HS in flat spacetime. YM-like models, arXiv:1812.05030 [INSPIRE]. · Zbl 1390.81289
[30] Bekaert, X.; Joung, E.; Mourad, J., On higher spin interactions with matter, JHEP, 05, 126 (2009) · doi:10.1088/1126-6708/2009/05/126
[31] Bekaert, X.; Joung, E.; Mourad, J., Effective action in a higher-spin background, JHEP, 02, 048 (2011) · Zbl 1294.81162 · doi:10.1007/JHEP02(2011)048
[32] Bonora, L.; Cvitan, M.; Dominis Prester, P.; Giaccari, S.; Paulišić, M.; Štemberga, T., Worldline quantization of field theory, effective actions and L_∞structure, JHEP, 04, 095 (2018) · Zbl 1390.83058 · doi:10.1007/JHEP04(2018)095
[33] Bekaert, X., Higher spin algebras as higher symmetries, Ann. U. Craiova Phys., 16, 58 (2006)
[34] de Medeiros, P.; Ramgoolam, S., Non-associative gauge theory and higher spin interactions, JHEP, 03, 072 (2005) · doi:10.1088/1126-6708/2005/03/072
[35] Douglas, MR; Nekrasov, NA, Noncommutative field theory, Rev. Mod. Phys., 73, 977 (2001) · Zbl 1205.81126 · doi:10.1103/RevModPhys.73.977
[36] Bonora, L.; Giaccari, S., Supersymmetric HS Yang-Mills-like models, Universe, 6, 245 (2020) · doi:10.3390/universe6120245
[37] R.L. Bishop and R.J. Crittenden, Geometry of Manifolds, Academic Press, Elsevier (1964). · Zbl 0132.16003
[38] Jackiw, R., Gauge-Covariant Conformal Transformations, Phys. Rev. Lett., 41, 1635 (1978) · doi:10.1103/PhysRevLett.41.1635
[39] Abou-Zeid, M.; Dorn, H., Comments on the energy momentum tensor in noncommutative field theories, Phys. Lett. B, 514, 183 (2001) · Zbl 0969.81638 · doi:10.1016/S0370-2693(01)00780-8
[40] Das, AK; Frenkel, J., On the energy momentum tensor in noncommutative gauge theories, Phys. Rev. D, 67, 067701 (2003) · Zbl 1222.81274 · doi:10.1103/PhysRevD.67.067701
[41] Grimstrup, JM; Kloibock, B.; Popp, L.; Putz, V.; Schweda, M.; Wickenhauser, M., The Energy momentum tensor in noncommutative gauge field models, Int. J. Mod. Phys. A, 19, 5615 (2004) · Zbl 1065.81123 · doi:10.1142/S0217751X04021007
[42] Balasin, H.; Blaschke, DN; Gieres, F.; Schweda, M., On the energy-momentum tensor in Moyal space, Eur. Phys. J. C, 75, 284 (2015) · doi:10.1140/epjc/s10052-015-3492-8
[43] S.A. Merkulov, The Moyal product is the matrix product [math-ph/0001039].
[44] xAct: Efficient tensor computer algebra for Mathematica, http://xact.es/index.html.
[45] Nutma, T., xTras : A field-theory inspired xAct package for mathematica, Comput. Phys. Commun., 185, 1719 (2014) · Zbl 1348.70003 · doi:10.1016/j.cpc.2014.02.006
[46] Aldrovandi, R.; Pereira, JG, Teleparallel Gravity: An Introduction (2012), Dordrecht The Netherlands: Springer, Dordrecht The Netherlands · Zbl 1259.83002
[47] Hayashi, K.; Shirafuji, T., New general relativity, Phys. Rev. D, 19, 3524 (1979) · Zbl 1267.83090 · doi:10.1103/PhysRevD.19.3524
[48] Einstein, A., Riemann-Geometrie mit Aufrechterhaltung des Begriffes des Fernparallelismus, Sitzber. Preuss. Akad. Wiss., 17, 217 (1928) · JFM 54.0942.04
[49] Einstein, A., Neue Möglichkeit für eine einheitliche Feldtheorie von Gravitation und Elektrizität, Sitzber. Preuss. Akad. Wiss., 17, 224 (1928) · JFM 54.0943.01
[50] Hayashi, K.; Nakano, T., Extended translation invariance and associated gauge fields, Prog. Theor. Phys., 38, 491 (1967) · doi:10.1143/PTP.38.491
[51] Pereira, JG; Obukhov, YN, Gauge Structure of Teleparallel Gravity, Universe, 5, 139 (2019) · doi:10.3390/universe5060139
[52] Le Delliou, M.; Huguet, E.; Fontanini, M., Teleparallel theory as a gauge theory of translations: Remarks and issues, Phys. Rev. D, 101, 024059 (2020) · doi:10.1103/PhysRevD.101.024059
[53] Einstein, A., Auf die Riemann-Metrik und den Fern-Parallelismus gegründete einheitliche Feldtheorie, Math. Ann., 102, 685 (1929) · JFM 56.0734.01 · doi:10.1007/BF01782370
[54] Steinacker, HC, On the quantum structure of space-time, gravity, and higher spin in matrix models, Class. Quant. Grav., 37, 113001 (2020) · Zbl 1478.83269 · doi:10.1088/1361-6382/ab857f
[55] Steinacker, HC, Higher-spin gravity and torsion on quantized space-time in matrix models, JHEP, 04, 111 (2020) · Zbl 1436.83027 · doi:10.1007/JHEP04(2020)111
[56] Bekaert, X.; Skvortsov, ED, Elementary particles with continuous spin, Int. J. Mod. Phys. A, 32, 1730019 (2017) · Zbl 1375.81009 · doi:10.1142/S0217751X17300198
[57] Schuster, P.; Toro, N., A Gauge Field Theory of Continuous-Spin Particles, JHEP, 10, 061 (2013) · Zbl 1342.81316 · doi:10.1007/JHEP10(2013)061
[58] Wigner, EP, On the quantum correction for thermodynamic equilibrium, Phys. Rev., 40, 749 (1932) · JFM 58.0948.07 · doi:10.1103/PhysRev.40.749
[59] Fairlie, DB, Moyal brackets, star products and the generalized Wigner function, Chaos Solitons Fractals, 10, 365 (1999) · Zbl 0997.81048 · doi:10.1016/S0960-0779(98)00158-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.