×

One-loop finiteness of chiral higher spin gravity. (English) Zbl 1451.83071

Summary: One of the main ideas behind Higher Spin Gravities is that the higher spin symmetry is expected to leave no room for counterterms, thereby eliminating UV divergences that make the pure gravity non-renormalizable. However, until recently it has not been clear if such a mechanism is realized. We show that Chiral Higher Spin Gravity is one-loop finite, the crucial point being that all one-loop \(S\)-matrix elements are UV-convergent despite the fact that the theory is naively not renormalizable by power counting. For any number of legs the one-loop \(S\)-matrix elements coincide with all-plus helicity one-loop amplitudes in pure QCD and SDYM, modulo a certain higher spin dressing, which is an unusual relation between the non-gravitational theories and a higher spin gravity.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C60 Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism
81T11 Higher spin theories
81U20 \(S\)-matrix theory, etc. in quantum theory
81T16 Nonperturbative methods of renormalization applied to problems in quantum field theory
81V05 Strong interaction, including quantum chromodynamics

References:

[1] Metsaev, RR, Poincaré invariant dynamics of massless higher spins: fourth order analysis on mass shell, Mod. Phys. Lett. A, 6, 359 (1991) · Zbl 1021.81542
[2] R.R. Metsaev, S matrix approach to massless higher spins theory. 2: the case of internal symmetry, Mod. Phys. Lett. A6 (1991) 2411 [INSPIRE]. · Zbl 1020.81941
[3] Ponomarev, D.; Skvortsov, ED, Light-front higher-spin theories in flat space, J. Phys. A, 50 (2017) · Zbl 1370.81154
[4] Skvortsov, ED; Tran, T.; Tsulaia, M., Quantum chiral higher spin gravity, Phys. Rev. Lett., 121 (2018)
[5] Skvortsov, E.; Tran, T.; Tsulaia, M., More on quantum chiral higher spin gravity, Phys. Rev. D, 101, 106001 (2020)
[6] Fronsdal, C., Massless fields with integer spin, Phys. Rev. D, 18, 3624 (1978)
[7] Fradkin, ES; Vasiliev, MA, Candidate to the role of higher spin symmetry, Annals Phys., 177, 63 (1987)
[8] M. Flato and C. Fronsdal, One massless particle equals two Dirac singletons: elementary particles in a curved space. 6, Lett. Math. Phys.2 (1978) 421 [INSPIRE].
[9] Berends, FA; Burgers, GJH; Van Dam, H., On spin three selfinteractions, Z. Phys. C, 24, 247 (1984)
[10] Maldacena, J.; Zhiboedov, A., Constraining conformal field theories with a higher spin symmetry, J. Phys. A, 46, 214011 (2013) · Zbl 1339.81089
[11] Boulanger, N.; Ponomarev, D.; Skvortsov, ED; Taronna, M., On the uniqueness of higher-spin symmetries in AdS and CFT, Int. J. Mod. Phys. A, 28, 1350162 (2013) · Zbl 1284.81250
[12] Weinberg, S., Photons and gravitons in S-matrix theory: derivation of charge conservation and equality of gravitational and inertial mass, Phys. Rev., 135, B1049 (1964) · Zbl 0144.23702
[13] Coleman, SR; Mandula, J., All possible symmetries of the S matrix, Phys. Rev., 159, 1251 (1967) · Zbl 0168.23702
[14] Fotopoulos, A.; Tsulaia, M., On the tensionless limit of string theory, off-shell higher spin interaction vertices and BCFW recursion relations, JHEP, 11, 086 (2010) · Zbl 1294.81104
[15] Bekaert, X.; Boulanger, N.; Leclercq, S., Strong obstruction of the Berends-Burgers-van Dam spin-3 vertex, J. Phys. A, 43, 185401 (2010) · Zbl 1188.81129
[16] Roiban, R.; Tseytlin, AA, On four-point interactions in massless higher spin theory in flat space, JHEP, 04, 139 (2017) · Zbl 1378.83007
[17] Dempster, P.; Tsulaia, M., On the structure of quartic vertices for massless higher spin fields on Minkowski background, Nucl. Phys. B, 865, 353 (2012) · Zbl 1262.81044
[18] Bekaert, X.; Erdmenger, J.; Ponomarev, D.; Sleight, C., Quartic AdS interactions in higher-spin gravity from conformal field theory, JHEP, 11, 149 (2015) · Zbl 1388.83565
[19] Maldacena, J.; Simmons-Duffin, D.; Zhiboedov, A., Looking for a bulk point, JHEP, 01, 013 (2017) · Zbl 1373.81335
[20] Sleight, C.; Taronna, M., Higher-spin gauge theories and bulk locality, Phys. Rev. Lett., 121, 171604 (2018)
[21] Ponomarev, D., A note on (non)-locality in holographic higher spin theories, Universe, 4, 2 (2018)
[22] Fradkin, ES; Vasiliev, MA, Cubic interaction in extended theories of massless higher spin fields, Nucl. Phys. B, 291, 141 (1987)
[23] Conde, E.; Joung, E.; Mkrtchyan, K., Spinor-helicity three-point amplitudes from local cubic interactions, JHEP, 08, 040 (2016) · Zbl 1390.83234
[24] Bekaert, X.; Boulanger, N.; Sundell, P., How higher-spin gravity surpasses the spin two barrier: no-go theorems versus yes-go examples, Rev. Mod. Phys., 84, 987 (2012)
[25] Bengtsson, AKH; Bengtsson, I.; Brink, L., Cubic interaction terms for arbitrary spin, Nucl. Phys. B, 227, 31 (1983)
[26] Bengtsson, AKH; Bengtsson, I.; Brink, L., Cubic interaction terms for arbitrarily extended supermultiplets, Nucl. Phys. B, 227, 41 (1983)
[27] Blencowe, MP, A consistent interacting massless higher spin field theory in D = (2 + 1), Class. Quant. Grav., 6, 443 (1989)
[28] Bergshoeff, E.; Blencowe, MP; Stelle, KS, Area preserving diffeomorphisms and higher spin algebra, Commun. Math. Phys., 128, 213 (1990) · Zbl 0707.17019
[29] Campoleoni, A.; Fredenhagen, S.; Pfenninger, S.; Theisen, S., Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP, 11, 007 (2010) · Zbl 1294.81240
[30] Henneaux, M.; Rey, S-J, Nonlinear W_∞as asymptotic symmetry of three-dimensional higher spin anti-de Sitter gravity, JHEP, 12, 007 (2010) · Zbl 1294.81137
[31] Pope, CN; Townsend, PK, Conformal higher spin in (2 + 1)-dimensions, Phys. Lett. B, 225, 245 (1989)
[32] Fradkin, ES; Linetsky, V., A superconformal theory of massless higher spin fields in D = (2 + 1), Annals Phys., 198, 293 (1990) · Zbl 0875.17004
[33] Grigoriev, M.; Lovrekovic, I.; Skvortsov, E., New conformal higher spin gravities in 3d, JHEP, 01, 059 (2020) · Zbl 1434.83099
[34] Segal, AY, Conformal higher spin theory, Nucl. Phys. B, 664, 59 (2003) · Zbl 1051.81042
[35] Tseytlin, AA, On limits of superstring in AdS_5× S^5, Theor. Math. Phys., 133, 1376 (2002) · Zbl 1078.81557
[36] Bekaert, X.; Joung, E.; Mourad, J., Effective action in a higher-spin background, JHEP, 02, 048 (2011) · Zbl 1294.81162
[37] Das, SR; Jevicki, A., Large N collective fields and holography, Phys. Rev. D, 68 (2003) · Zbl 1244.81049
[38] de Mello Koch, R.; Jevicki, A.; Suzuki, K.; Yoon, J., AdS maps and diagrams of bi-local holography, JHEP, 03, 133 (2019) · Zbl 1414.81201
[39] Sperling, M.; Steinacker, HC, Covariant 4-dimensional fuzzy spheres, matrix models and higher spin, J. Phys. A, 50, 375202 (2017) · Zbl 1380.81419
[40] Metsaev, RR, Light-cone gauge cubic interaction vertices for massless fields in AdS_4, Nucl. Phys. B, 936, 320 (2018) · Zbl 1400.81164
[41] Skvortsov, E., Light-front bootstrap for Chern-Simons matter theories, JHEP, 06, 058 (2019) · Zbl 1416.83092
[42] Goddard, P.; Goldstone, J.; Rebbi, C.; Thorn, CB, Quantum dynamics of a massless relativistic string, Nucl. Phys. B, 56, 109 (1973)
[43] Klebanov, IR; Polyakov, AM, AdS dual of the critical O(N ) vector model, Phys. Lett. B, 550, 213 (2002) · Zbl 1001.81057
[44] Giombi, S.; Minwalla, S.; Prakash, S.; Trivedi, SP; Wadia, SR; Yin, X., Chern-Simons theory with vector fermion matter, Eur. Phys. J. C, 72, 2112 (2012)
[45] Chalmers, G.; Siegel, W., The selfdual sector of QCD amplitudes, Phys. Rev. D, 54, 7628 (1996)
[46] Ponomarev, D., Chiral higher spin theories and self-duality, JHEP, 12, 141 (2017) · Zbl 1383.83127
[47] Siegel, W., Selfdual N = 8 supergravity as closed N = 2 (N = 4) strings, Phys. Rev. D, 47, 2504 (1993)
[48] Krasnov, K., Self-dual gravity, Class. Quant. Grav., 34 (2017) · Zbl 1369.83028
[49] Z. Bern, L.J. Dixon and D.A. Kosower, New QCD results from string theory, in International conference on strings ′ 93, (1993), pg. 0190 [hep-th/9311026] [INSPIRE]. · Zbl 0844.58111
[50] Z. Bern, G. Chalmers, L.J. Dixon and D.A. Kosower, One loop N gluon amplitudes with maximal helicity violation via collinear limits, Phys. Rev. Lett.72 (1994) 2134 [hep-ph/9312333] [INSPIRE].
[51] G. Mahlon, One loop multi-photon helicity amplitudes, Phys. Rev. D49 (1994) 2197 [hep-ph/9311213] [INSPIRE].
[52] Mandelstam, S., Light cone superspace and the ultraviolet finiteness of the N = 4 model, Nucl. Phys. B, 213, 149 (1983)
[53] Brink, L.; Lindgren, O.; Nilsson, BEW, The ultraviolet finiteness of the N = 4 Yang-Mills theory, Phys. Lett. B, 123, 323 (1983)
[54] Beccaria, M.; Tseytlin, AA, On higher spin partition functions, J. Phys. A, 48, 275401 (2015) · Zbl 1330.81166
[55] Maldacena, J.; Zhiboedov, A., Constraining conformal field theories with a slightly broken higher spin symmetry, Class. Quant. Grav., 30, 104003 (2013) · Zbl 1269.83053
[56] Aharony, O.; Gur-Ari, G.; Yacoby, R., Correlation functions of large N Chern-Simons-matter theories and bosonization in three dimensions, JHEP, 12, 028 (2012) · Zbl 1397.81126
[57] Aharony, O., Baryons, monopoles and dualities in Chern-Simons-matter theories, JHEP, 02, 093 (2016) · Zbl 1388.81744
[58] Karch, A.; Tong, D., Particle-vortex duality from 3d bosonization, Phys. Rev. X, 6 (2016)
[59] Seiberg, N.; Senthil, T.; Wang, C.; Witten, E., A duality web in 2 + 1 dimensions and condensed matter physics, Annals Phys., 374, 395 (2016) · Zbl 1377.81262
[60] Ponomarev, D.; Tseytlin, AA, On quantum corrections in higher-spin theory in flat space, JHEP, 05, 184 (2016) · Zbl 1388.83602
[61] Metsaev, RR, Cubic interaction vertices of massive and massless higher spin fields, Nucl. Phys. B, 759, 147 (2006) · Zbl 1116.81042
[62] G. Chalmers and W. Siegel, Simplifying algebra in Feynman graphs. Part 2. Spinor helicity from the space-cone, Phys. Rev. D59 (1999) 045013 [hep-ph/9801220] [INSPIRE].
[63] D. Chakrabarti, J. Qiu and C.B. Thorn, Scattering of glue by glue on the light-cone worldsheet. I. Helicity non-conserving amplitudes, Phys. Rev. D72 (2005) 065022 [hep-th/0507280] [INSPIRE].
[64] D. Chakrabarti, J. Qiu and C.B. Thorn, Scattering of glue by glue on the light-cone worldsheet. II. Helicity conserving amplitudes, Phys. Rev. D74 (2006) 045018 [Erratum ibid.76 (2007) 089901] [hep-th/0602026] [INSPIRE].
[65] Ananth, S., Spinor helicity structures in higher spin theories, JHEP, 11, 089 (2012)
[66] A.K.H. Bengtsson, Notes on cubic and quartic light-front kinematics, arXiv:1604.01974 [INSPIRE].
[67] Ponomarev, D., Off-shell spinor-helicity amplitudes from light-cone deformation procedure, JHEP, 12, 117 (2016) · Zbl 1390.83292
[68] P. Benincasa and F. Cachazo, Consistency conditions on the S-matrix of massless particles, arXiv:0705.4305 [INSPIRE].
[69] Benincasa, P.; Conde, E., Exploring the S-matrix of massless particles, Phys. Rev. D, 86 (2012)
[70] Konstein, SE; Vasiliev, MA, Extended higher spin superalgebras and their massless representations, Nucl. Phys. B, 331, 475 (1990)
[71] Goroff, MH; Sagnotti, A., The ultraviolet behavior of Einstein gravity, Nucl. Phys. B, 266, 709 (1986)
[72] C.B. Thorn, Renormalization of quantum fields on the lightcone worldsheet. 1. Scalar fields, Nucl. Phys. B699 (2004) 427 [hep-th/0405018] [INSPIRE]. · Zbl 1123.81385
[73] E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B644 (2002) 303 [Erratum ibid.660 (2003) 403] [hep-th/0205131] [INSPIRE]. · Zbl 0999.81078
[74] Leigh, RG; Petkou, AC, Holography of the N = 1 higher spin theory on AdS_4, JHEP, 06, 011 (2003)
[75] N. Colombo and P. Sundell, Higher spin gravity amplitudes from zero-form charges, arXiv:1208.3880 [INSPIRE]. · Zbl 1306.83061
[76] Didenko, VE; Mei, J.; Skvortsov, ED, Exact higher-spin symmetry in CFT: free fermion correlators from Vasiliev theory, Phys. Rev. D, 88 (2013)
[77] Didenko, VE; Skvortsov, ED, Exact higher-spin symmetry in CFT: all correlators in unbroken Vasiliev theory, JHEP, 04, 158 (2013) · Zbl 1342.81176
[78] Bonezzi, R.; Boulanger, N.; De Filippi, D.; Sundell, P., Noncommutative Wilson lines in higher-spin theory and correlation functions of conserved currents for free conformal fields, J. Phys. A, 50, 475401 (2017)
[79] Fradkin, ES; Tseytlin, AA, Quantum properties of higher dimensional and dimensionally reduced supersymmetric theories, Nucl. Phys. B, 227, 252 (1983)
[80] Bossard, G.; Kleinschmidt, A., Loops in exceptional field theory, JHEP, 01, 164 (2016) · Zbl 1388.81402
[81] Joung, E.; Nakach, S.; Tseytlin, AA, Scalar scattering via conformal higher spin exchange, JHEP, 02, 125 (2016) · Zbl 1388.83594
[82] Gopakumar, R.; Gupta, RK; Lal, S., The heat kernel on AdS, JHEP, 11, 010 (2011) · Zbl 1306.81155
[83] Tseytlin, AA, On partition function and Weyl anomaly of conformal higher spin fields, Nucl. Phys. B, 877, 598 (2013) · Zbl 1284.81259
[84] Giombi, S.; Klebanov, IR, One loop tests of higher spin AdS/CFT, JHEP, 12, 068 (2013) · Zbl 1342.83240
[85] Giombi, S.; Klebanov, IR; Tseytlin, AA, Partition functions and Casimir energies in higher spin AdS_d+1/CFT_d, Phys. Rev. D, 90 (2014)
[86] Beccaria, M.; Bekaert, X.; Tseytlin, AA, Partition function of free conformal higher spin theory, JHEP, 08, 113 (2014)
[87] Beccaria, M.; Tseytlin, AA, Higher spins in AdS_5at one loop: vacuum energy, boundary conformal anomalies and AdS/CFT, JHEP, 11, 114 (2014)
[88] Günaydin, M.; Skvortsov, ED; Tran, T., Exceptional F (4) higher-spin theory in AdS_6at one-loop and other tests of duality, JHEP, 11, 168 (2016) · Zbl 1390.83281
[89] Bae, J-B; Joung, E.; Lal, S., One-loop test of free SU(N ) adjoint model holography, JHEP, 04, 061 (2016) · Zbl 1388.83168
[90] Skvortsov, ED; Tran, T., AdS/CFT in fractional dimension and higher spin gravity at one loop, Universe, 3, 61 (2017)
[91] Ponomarev, D.; Sezgin, E.; Skvortsov, E., On one loop corrections in higher spin gravity, JHEP, 11, 138 (2019) · Zbl 1429.81076
[92] Ponomarev, D., From bulk loops to boundary large-N expansion, JHEP, 01, 154 (2020) · Zbl 1434.81114
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.