×

Multigrid-augmented deep learning preconditioners for the Helmholtz equation. (English) Zbl 07704368

Summary: In this paper, we present a data-driven approach to iteratively solve the discrete heterogeneous Helmholtz equation at high wavenumbers. In our approach, we combine classical iterative solvers with convolutional neural networks (CNNs) to form a preconditioner which is applied within a Krylov solver. For the preconditioner, we use a CNN of type U-Net that operates in conjunction with multigrid ingredients. Two types of preconditioners are proposed: (1) U-Net as a coarse grid solver and (2) U-Net as a deflation operator with shifted Laplacian V-cycles. Following our training scheme and data-augmentation, our CNN preconditioner can generalize over residuals and a relatively general set of wave slowness models. On top of that, we also offer an encoder-solver framework where an “encoder” network generalizes over the medium and sends context vectors to another “solver” network, which generalizes over the right-hand sides. We show that this option is more robust and efficient than the standalone variant. Last, we also offer a mini-retraining procedure, to improve the solver after the model is known. This option is beneficial when solving multiple right-hand sides, like in inverse problems. We demonstrate the efficiency and generalization abilities of our approach on a variety of two-dimensional problems.

MSC:

68T07 Artificial neural networks and deep learning
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
65N22 Numerical solution of discretized equations for boundary value problems involving PDEs

References:

[1] F. Aminzadeh, B. Jean, and T. Kunz, 3-D Salt and Overthrust Models, Society of Exploration Geophysicists, 1997.
[2] L. Bar and N. Sochen, Strong solutions for PDE-based tomography by unsupervised learning, SIAM J. Imaging Sci., 14 (2021), pp. 128-155. · Zbl 1541.65136
[3] Y. Bar-Sinai, S. Hoyer, J. Hickey, and M. P. Brenner, Learning data-driven discretizations for partial differential equations, Proc. Natl. Acad. Sci. USA, 116 (2019), pp. 15344-15349. · Zbl 1431.65195
[4] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia: A fresh approach to numerical computing, SIAM Rev., 59 (2017), pp. 65-98, https://doi.org/10.1137/141000671. · Zbl 1356.68030
[5] A. Brougois, M. Bourget, P. Lailly, M. Poulet, P. Ricarte, and R. Versteeg, Marmousi, model and data, in Proceedings of the EAEG Workshop-Practical Aspects of Seismic Data Inversion, European Association of Geoscientists & Engineers, 1990.
[6] H. Calandra, S. Gratton, J. Langou, X. Pinel, and X. Vasseur, Flexible variants of block restarted gmres methods with application to geophysics, SIAM J. Sci. Comput., 34 (2012), pp. A714-A736. · Zbl 1248.65036
[7] H. Calandra, S. Gratton, X. Pinel, and X. Vasseur, An improved two-grid preconditioner for the solution of three-dimensional Helmholtz problems in heterogeneous media, Numer. Linear Algebra Appl., 20 (2013), pp. 663-688. · Zbl 1313.65284
[8] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, Model compression and acceleration for deep neural networks: The principles, progress, and challenges, IEEE Signal Process. Mag., 35 (2018), pp. 126-136.
[9] V. Dwarka and C. Vuik, Scalable convergence using two-level deflation preconditioning for the Helmholtz equation, SIAM J. Sci. Comput., 42 (2020), pp. A901-A928. · Zbl 1439.65139
[10] M. Eliasof and E. Treister, Diffgcn: Graph convolutional networks via differential operators and algebraic multigrid pooling, Proceedings of Advances in Neural Information Processing Systems (NeurIPS), 2020.
[11] B. Engquist and A. Majda, Radiation boundary conditions for acoustic and elastic wave calculations, Comm. Pure Appl. Math., 32 (1979), pp. 313-357. · Zbl 0387.76070
[12] Y. A. Erlangga, C. W. Oosterlee, and C. Vuik, A novel multigrid based preconditioner for heterogeneous Helmholtz problems, SIAM J. Sci. Comput., 27 (2006), pp. 1471-1492. · Zbl 1095.65109
[13] M. J. Gander and H. Zhang, A class of iterative solvers for the Helmholtz equation: Factorizations, sweeping preconditioners, source transfer, single layer potentials, polarized traces, and optimized Schwarz methods, Siam Rev., 61 (2019), pp. 3-76. · Zbl 1417.65216
[14] M. Geist, P. Petersen, M. Raslan, R. Schneider, and G. Kutyniok, Numerical solution of the parametric diffusion equation by deep neural networks, J. Sci. Comput., 88 (2021), pp. 1-37. · Zbl 1473.35331
[15] I. J. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, Cambridge, MA, 2016. · Zbl 1373.68009
[16] I. G. Graham, E. A. Spence, and J. Zou, Domain decomposition with local impedance conditions for the Helmholtz equation with absorption, SIAM J. Numer. Anal., 58 (2020), pp. 2515-2543. · Zbl 1465.65162
[17] D. Greenfeld, M. Galun, R. Basri, I. Yavneh, and R. Kimmel, Learning to optimize multigrid pde solvers, in Proceedings of the International Conference on Machine Learning, PMLR, 2019, pp. 2415-2423.
[18] J. Han, A. Jentzen, and E. Weinan, Solving high-dimensional partial differential equations using deep learning, Proc. Natl. Acad. Sci., 115 (2018), pp. 8505-8510. · Zbl 1416.35137
[19] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770-778.
[20] J. Hermann, Z. Schätzle, and F. Noé, Deep-neural-network solution of the electronic Schrödinger equation, Nat. Chem., 12 (2020), pp. 891-897.
[21] M. Innes, Flux: Elegant machine learning with Julia, J. Open Source Softw., 2018.
[22] S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, in Proceedings of the International Conference on Machine Learning, PMLR, 2015, pp. 448-456.
[23] Y. Khoo, J. Lu, and L. Ying, Solving parametric PDE problems with artificial neural networks, European J. Appl. Math., 32 (2021), pp. 421-435. · Zbl 1501.65154
[24] Y. Khoo and L. Ying, Switchnet: A neural network model for forward and inverse scattering problems, SIAM J. Sci. Comput., 41 (2019), pp. A3182-A3201. · Zbl 1425.65208
[25] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, in Proceedings of the International Conference for Learning Representations (ICLR), 2015.
[26] A. Krizhevsky, Learning Multiple Layers of Features from Tiny Images, Technical report, 2009.
[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks, in Proceedings of the Advances in Neural Information Processing Systems, 2012, pp. 1097-1105.
[28] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature, 521 (2015), pp. 436-444.
[29] Y. Li, H. Yang, E. R. Martin, K. L. Ho, and L. Ying, Butterfly factorization, Multiscale Model. Simul., 13 (2015), pp. 714-732. · Zbl 1317.44004
[30] L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis, Deepxde: A deep learning library for solving differential equations, SIAM Rev., 63 (2021), pp. 208-228. · Zbl 1459.65002
[31] S. Luo, J. Qian, and R. Burridge, Fast Huygens sweeping methods for Helmholtz equations in inhomogeneous media in the high frequency regime, J. Comput. Phys., 270 (2014), pp. 378-401. · Zbl 1349.78051
[32] L. Métivier, R. Brossier, S. Operto, and J. Virieux, Full waveform inversion and the truncated newton method, SIAM Rev., 59 (2017), pp. 153-195. · Zbl 1357.86001
[33] B. Moseley, A. Markham, and T. Nissen-Meyer, Solving the Wave Equation with Physics-Informed Deep Learning, preprint, arXiv:2006.11894, 2020.
[34] O. Obiols-Sales, A. Vishnu, N. Malaya, and A. Chandramowliswharan, CFDNet: A deep learning-based accelerator for fluid simulations, in Proceedings of the 34th ACM International Conference on Supercomputing, 2020, https://doi.org/10.1145/3392717.3392772.
[35] L. N. Olson and J. B. Schroder, Smoothed aggregation for Helmholtz problems, Numer. Linear Algebra Appl., 17 (2010), pp. 361-386. · Zbl 1240.65359
[36] S. Papadimitropoulos and D. Givoli, The double absorbing boundary method for the Helmholtz equation, Appl. Numer. Math., 168 (2021), pp. 182-200. · Zbl 1469.74104
[37] J. Poulson, B. Engquist, S. Li, and L. Ying, A parallel sweeping preconditioner for heterogeneous 3D Helmholtz equations, SIAM J. Sci. Comput., 35 (2013), pp. C194-C212. · Zbl 1275.65073
[38] M. Raissi and G. E. Karniadakis, Hidden physics models: Machine learning of nonlinear partial differential equations, J. Comput. Phys., 357 (2018), pp. 125-141. · Zbl 1381.68248
[39] M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378 (2019), pp. 686-707. · Zbl 1415.68175
[40] B. Reps and T. Weinzierl, Complex additive geometric multilevel solvers for Helmholtz equations on spacetrees, ACM Trans. Math. Software, 44 (2017). · Zbl 1380.65242
[41] O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional Networks for Biomedical Image Segmentation, https://arxiv.org/abs/1505.04597, 2015.
[42] Y. Saad, A flexible inner-outer preconditioned gmres algorithm, SIAM J. Sci. Comput., 14 (1993), pp. 461-469. · Zbl 0780.65022
[43] A. Sheikh, D. Lahaye, L. Garcia Ramos, R. Nabben, and C. Vuik, Accelerating the shifted Laplace preconditioner for the helmholtz equation by multilevel deflation, J. Comput. Phys., 322 (2016), pp. 473-490. · Zbl 1352.65456
[44] A. H. Sheikh, D. Lahaye, and C. Vuik, On the convergence of shifted Laplace preconditioner combined with multilevel deflation, Numer. Linear Algebra Appl., 20 (2013), pp. 645-662. · Zbl 1313.65293
[45] I. Singer and E. Turkel, A perfectly matched layer for the Helmholtz equation in a semi-infinite strip, J. Comput. Phys., 201 (2004), pp. 439-465. · Zbl 1061.65109
[46] E. Treister and E. Haber, A multigrid solver to the Helmholtz equation with a point source based on travel time and amplitude, Numer. Linear Algebra Appl., 26 (2019), p. e2206. · Zbl 1524.65929
[47] N. Umetani, S. P. MacLachlan, and C. W. Oosterlee, A multigrid-based shifted Laplacian preconditioner for a fourth-order Helmholtz discretization, Numer. Linear Algebra Appl., 16 (2009), pp. 603-626. · Zbl 1224.65078
[48] P. R. Wiecha and O. L. Muskens, Deep learning meets nanophotonics: A generalized accurate predictor for near fields and far fields of arbitrary 3D nanostructures, Nano Lett., 20 (2019), pp. 329-338.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.