×

Efficient preconditioned iterative linear solvers for 3-D magnetostatic problems using edge elements. (English) Zbl 1488.65070

Summary: For numerical computation of three-dimensional (3-D) large-scale magnetostatic problems, iterative solver is preferable since a huge amount of memory is needed in case of using sparse direct solvers. In this paper, a recently proposed Coulomb-gauged magnetic vector potential (MVP) formulation for magnetostatic problems is adopted for finite element discretization using edge elements, where the resultant linear system is symmetric but ill-conditioned. To solve such linear systems efficiently, we exploit iterative Krylov subspace solvers by constructing three novel block preconditioners, which are derived from conventional block Jacobi, Gauss-Seidel and constraint preconditioners. Spectral properties and practical implementation details of the proposed preconditioners are also discussed. Then, numerical examples of practical simulations are presented to illustrate the efficiency and accuracy of the proposed methods.

MSC:

65F10 Iterative numerical methods for linear systems
65F08 Preconditioners for iterative methods
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
78A30 Electro- and magnetostatics
78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory

Software:

QMRPACK; AMD; CSparse
Full Text: DOI

References:

[1] Y. ZHAO AND W. FU, A novel Coulomb-gauged magnetic vector potential formulation for 3-D eddy-current field analysis using edge elements, IEEE Trans. Magn., 53(6) (2017), 9400704.
[2] Y. ZHAO AND W. FU, Robust full wave Maxwell solver in time-domain using magnetic vector potential with edge elements, IET Sci. Meas. Technol., 11(6) (2017), pp. 746-752.
[3] Y. ZHAO AND Z. TANG, A symmetric field-circuit coupled formulation for 3-D transient full-wave Maxwell problems, IEEE Trans. Magn., 55(6) (2019), 7201804.
[4] S. L. HO, Y. ZHAO, W. N. FU AND P. ZHOU, Application of edge-elements to 3-D electromagnetic field analysis accounting for both inductive and capacitive effects, IEEE Trans. Magn., 52(3) (2016), 7400504.
[5] Y. ZHAO AND W. N. FU, A new stable full-wave Maxwell solver for all frequencies, IEEE Trans. Magn., 53(6) (2017), 7200704.
[6] Y. ZHAO, S. HO AND W. FU, A novel fast remesh-free mesh deformation method and its application to optimal design of electromagnetic devices, IEEE Trans. Magn., 50(11) (2014), 7200904.
[7] Y. ZHAO AND W. N. FU, A novel formulation with Coulomb gauge for 3-D magnetostatic problems using edge elements, IEEE Trans. Magn., 53(6) (2017), 9100104.
[8] Y. ZHAO AND Z. TANG, Improved equilibrated error estimates for open boundary magnetostatic problems based on dual A and H formulations, IEEE Trans. Magn., 55(6) (2019), 7201105.
[9] Y. ZHAO AND Z. TANG, Accurate extraction of winding inductances using dual formulations without source field computation, IEEE Trans. Magn., 55(6) (2019), 7201504.
[10] C. GAIER AND H. HAAS, Edge element analysis of magnetostatic and transient eddy current fields using H-formulations, IEEE Trans. Magn., 31(3) (1995), pp. 1460-1463.
[11] A. BERMÚDEZ, R. RODRÍGUEZ AND P. SALGADO, A finite element method for the magnetostatic problem in terms of scalar potentials, SIAM J. Numer. Anal., 46(3) (2008), pp. 1338-1363. · Zbl 1171.78010
[12] Y.-L. LI, S. SUN, QI. I. DAI AND W. C. CHEW, Vectorial solution to double curl equation with generalized Coulomb Gauge for magnetostatic problems, IEEE Trans. Magn., 51(8) (2015), 7002306.
[13] H. BATELAAN AND A. TONOMURA, The Aharonov-Bohm effects: variations on a subtle theme, Phys. Today, 62(9) (2009), pp. 38-43.
[14] O. BÍRÓ AND K. PREIS, On the use of magnetic vector potential in the finite element analysis of three dimensional eddy currents, IEEE Trans. Magn., 25(4) (1989), pp. 3145-3159.
[15] K. PREIS, I. BARDI, O. BÍRÓ, C. MAGELE, G. VRISK AND K. R. RICHTER, Different finite element formulations of 3D magnetostatic fields, IEEE Trans. Magn., 28(2) (1992), pp. 1056-1059.
[16] O. BÍRÓ, K. PREIS AND K. R. RICHTER, On the use of the magnetic vector potential in the nodal and edge finite element analysis of 3D magnetostatic problems, IEEE Trans. Magn., 32(3) (1996), pp. 651-654.
[17] T. A. DAVIS, S. RAJAMANICKAM AND W. M. SID-LAKHDAR, A survey of direct methods for sparse linear systems, Acta Numer., 25 (2016), pp. 383-566. · Zbl 1346.65011
[18] P. R. AMESTOY, T. A. DAVIS AND I. S. DUFF, Algorithm 837: AMD, an approximate minimum degree ordering algorithm, ACM Trans. Math. Softw., 30(3) (2004), pp. 381-388. · Zbl 1070.65534
[19] P. DI BARBA, I. PERUGIA AND A. SAVINI, Recent experiences on mixed finite elements for 2D simulations of magnetic fields, COMPEL, 17(5) (1998), pp. 674-681. · Zbl 0932.78011
[20] J. CHEN, Y. XU AND J. ZOU, An adaptive edge element method and its convergence for a saddle-point problem from magnetostatics, Numer. Meth. Partial Differential Equations, 28(5) (2012), pp. 1643-1666. · Zbl 1259.78039
[21] Y. SAAD, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, PA, 2003. · Zbl 1031.65046
[22] X.-M. GU, T.-Z. HUANG, L. LI, H.-B. LI, T. SOGABE AND M. CLEMENS, Quasi-minimal residual variants of the COCG and COCR methods for complex symmetric linear systems in electro-magnetic simulations, IEEE Trans. Microw. Theory Tech., 62(12) (2014), pp. 2859-2867.
[23] X.-M. GU, M. CLEMENS, T.-Z. HUANG AND L. LI, The SCBiCG class of algorithms for complex symmetric linear systems with applications in several electromagnetic model problems, Comput. Phys. Commun., 191 (2015), pp. 52-64. · Zbl 1344.65041
[24] I. PERUGIA, V. SIMONCINI AND M. ARIOLI, Linear algebra methods in a mixed approximation of magnetostatic problems, SIAM J. Sci. Comput., 21(3) (1999), pp. 1085-1101. · Zbl 1040.78012
[25] C. C. PAIGE AND M. A. SAUNDERS, Solution of sparse indefinite systems of linear equations, SIAM J. Numer. Anal., 12(4) (1975), pp. 617-629. · Zbl 0319.65025
[26] R. W. FREUND AND N. M. NACHTIGAL, Software for simplified Lanczos and QMR algorithms, Appl. Numer. Math., 19(3) (1995), pp. 319-341. · Zbl 0853.65041
[27] P. DI BARBA, A. SAVINI AND I. PERUGIA, Mixed finite elements for the simulation of fields and forces in electromagnetic devices, IEEE Trans. Magn., 34(5) (1998), pp. 3572-3575.
[28] P. ALOTTO AND I. PERUGIA, Tree-cotree implicit condensation in magnetostatics, IEEE Trans. Magn., 36(4) (2000), pp. 1523-1526.
[29] I. PERUGIA, A field-based mixed formulation for the two-dimensional magnetostatic problem, SIAM J. Numer. Anal., 34(6) (1997), pp. 2382-2391. · Zbl 0896.65087
[30] Z.-H. CAO, Constraint Schur complement preconditioners for nonsymmetric saddle point problems, Appl. Numer. Math., 59(1) (2009), pp. 151-169. · Zbl 1161.65037
[31] I. PERUGIA AND V. SIMONCINI, Block-diagonal and indefinite symmetric preconditioners for mixed finite element formulations, Numer. Linear Algebra Appl., 7(7-8) (2000), pp. 585-616. · Zbl 1051.65038
[32] J. CHEN, Z. CHEN, T. CUI AND L. ZHANG, An adaptive finite element method for the eddy current model with circuit/field couplings, SIAM J. Sci. Comput., 32(2) (2010), pp. 1020-1042. · Zbl 1211.78029
[33] E. CHOW AND Y. SAAD, Experimental study of ILU preconditioners for indefinite matrices, J. Comput. Appl. Math., 86(2) (1997), pp. 387-414. · Zbl 0891.65028
[34] T. A. MANTEUFFEL, An incomplete factorization technique for positive definite linear systems, Math. Comput., 34(150) (1980), pp. 473-497. · Zbl 0422.65018
[35] D. K. SALKUYEH, M. MASOUDI AND D. HEZARI, On the generalized shift-splitting precondi-tioner for saddle point problems, Appl. Math. Lett., 48 (2015), pp. 55-61. · Zbl 1325.65048
[36] F. P. ALI BEIK, M. BENZI AND S.-H. AZIZI CHAPARPORDI, On block diagonal and block trian-gular iterative schemes and preconditioners for stabilized saddle point problems, J. Comput. Appl. Math., 326 (2017), pp. 15-30. · Zbl 1370.65015
[37] C.-J. LIN AND J. J. MORÉ, Incomplete Cholesky factorizations with limited memory, SIAM J. Sci. Comput., 21(1) (1999), pp. 24-45. · Zbl 0941.65033
[38] Y. ZHANG, T.-Z. HUANG, Y.-F. JING AND L. LI, Flexible incomplete Cholesky factorization with multi-parameters to control the number of nonzero elements in preconditioners, Numer. Linear Algebra Appl., 19(3) (2012), pp. 555-569. · Zbl 1274.65088
[39] Y. SAAD AND M. H. SCHULTZ, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7(3) (1986), pp. 856-869. · Zbl 0599.65018
[40] S. C. EISENSTAT, H. C. ELMAN AND M. H. SCHULTZ, Variational iterative methods for non-symmetric systems of linear equations, SIAM J. Numer. Anal., 20(2) (1983), pp. 345-357. · Zbl 0524.65019
[41] P. JIRÁNEK AND M. ROZLOZNÍK, Adaptive version of simpler GMRES, Numer. Algorithms, 53(1) (2010), pp. 93-112. · Zbl 1188.65033
[42] X.-M. GU, T.-Z. HUANG, B. CARPENTIERI, L. LI AND C. WEN, A hybridized iterative algo-rithm of the BiCORSTAB and GPBiCOR methods for solving non-Hermitian linear systems, Com-put. Math. Appl., 70(12) (2015), pp. 3019-3031. · Zbl 1443.65042
[43] E. DENNISON, Axial field of a finite solenoid, 2005. Available onlinear at: https://tiggerntatie.github.io/emagnet/solenoids/solenoidonaxis.htm.
[44] G. AKOUN AND J.-P. YONNET, 3D analytical calculation of the forces exerted between two cuboidal magnets, IEEE Trans. Magn., 20(5) (1984), pp. 1962-1964.
[45] V. SIMONCINI AND D. B. SZYLD, Theory of inexact Krylov subspace methods and applications to scientific computing, SIAM J. Sci. Comput., 25(2) (2003), pp. 454-477. · Zbl 1048.65032
[46] Y. XI, R. LI AND Y. SAAD, An algebraic multilevel preconditioner with low-rank corrections for sparse symmetric matrices, SIAM. J. Matrix Anal. Appl., 37(1) (2016), pp. 235-259. · Zbl 1376.65036
[47] P. GATTO AND J. S. HESTHAVEN, Efficient preconditioning of hp-FEM matrices by hierarchical low-rank approximations, J. Sci. Comput., 72(1) (2017), pp. 49-80. · Zbl 1371.65028
[48] M. BEBENDORF, Hierarchical Matrices: a Means to Efficiently Solve Elliptic Boundary Value Problems, Lecture Notes in Computational Science and Engineering, vol. 63, Springer-Verlag, Berlin Heidelberg, 2008. · Zbl 1151.65090
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.