×

A structure preserving approximation method for Hamiltonian exponential matrices. (English) Zbl 1246.65076

Summary: The approximation of exp\((A)V\) where \(A\) is a real matrix and \(V\) a rectangular matrix is the key ingredient of many exponential integrators for solving systems of ordinary differential equations. In this paper we give an appropriate structure preserving approximation method to exp\((A)V\) when \(A\) is a Hamiltonian or skew-Hamiltonian \(2n\)-by-\(2n\) real matrix. Our approach is based on Krylov subspace methods that preserve Hamiltonian or skew-Hamiltonian structure. In this regard we use a symplectic Lanczos algorithm to compute the desired approximation.

MSC:

65F60 Numerical computation of matrix exponential and similar matrix functions
65P10 Numerical methods for Hamiltonian systems including symplectic integrators
37M15 Discretization methods and integrators (symplectic, variational, geometric, etc.) for dynamical systems

Software:

QMRPACK
Full Text: DOI

References:

[1] S. Agoujil, PhD thesis, Faculté des Sciences et Techniques-Marrakech, Département de Mathématiques et Informatique, 2008.; S. Agoujil, PhD thesis, Faculté des Sciences et Techniques-Marrakech, Département de Mathématiques et Informatique, 2008.
[2] Agoujil, S.; Bentbib, A. H., Symplectic Lanczos algorithm for Hamiltonian matrices, Int. J. Tomogr. Stat., 10, 3-25 (2008)
[3] Arnoldi, W. E., The principal of minimized iteration in the solution of the matrix eigenvalue problem, Quart. Appl. Math., 9, 17-29 (1951) · Zbl 0042.12801
[4] M. Athans, W.S. Levine, A. Levis, A system for the optimal and suboptimal position and velocity control for a string of high-speed vehicles, in: Proc. Fifth Int. Analogue Computation Meetings, Lausanne, Switzerland, September, 1967.; M. Athans, W.S. Levine, A. Levis, A system for the optimal and suboptimal position and velocity control for a string of high-speed vehicles, in: Proc. Fifth Int. Analogue Computation Meetings, Lausanne, Switzerland, September, 1967.
[5] Benner, P.; Fassbender, H., An implicitly restarted symplectic Lanczos method for the Hamiltonian eigenvalue problem, Linear Algebra Appl., 263, 75-111 (1997) · Zbl 0884.65028
[6] Bridges, T. J.; Reich, S., Computing Lyapunov exponents on a Stiefel manifold, Physica D, 156, 219-238 (2001) · Zbl 0979.37044
[7] Celledoni, E.; Iserles, A., Methods for the approximation of the matrix exponential in a Lie-algebraic setting, IMA J. Numer. Anal., 21, 463-488 (2001) · Zbl 1009.65040
[8] Celledoni, E.; Moret, I., A Krylov projection method for systems of ODEs, Appl. Numer. Math., 24, 365-378 (1997) · Zbl 0885.65073
[9] Del Buono, N.; Lopez, L.; Peluso, R., Computation of exponentials of large sparse skew symmetric matrices, SIAM J. Sci. Comput., 27, 278-293 (2005) · Zbl 1108.65037
[10] Edelman, A.; Arias, T.; Smith, S. T., The geometry of algorithms with orthogonality constraints, SIAM J. Matrix Anal. Appl., 20, 303-353 (1999) · Zbl 0928.65050
[11] T. Eirola, Krylov integrators for Hamiltonian systems, in: Workshop on Exponential Integrators, Innsbruck, Austria, October 20-23, 2004.; T. Eirola, Krylov integrators for Hamiltonian systems, in: Workshop on Exponential Integrators, Innsbruck, Austria, October 20-23, 2004. · Zbl 1435.65228
[12] Ferng, W. R.; Lin, Wen-Wei; Wang, Chern-Shuh, The shift-inverted \(J\)-Lanczos algorithm for the numerical solutions of large sparse algebraic Riccati equations, Comput. Math. Appl., 33, 23-40 (1997) · Zbl 0889.65034
[13] W.R. Ferng, Wen-Wei Lin, Chern-Shuh Wang, A structure-preserving lanczos-type algorithm with application to control problems, in: Proceedings of the 36th Conference on Decision & Control, San Diego, CA, USA, December 1997.; W.R. Ferng, Wen-Wei Lin, Chern-Shuh Wang, A structure-preserving lanczos-type algorithm with application to control problems, in: Proceedings of the 36th Conference on Decision & Control, San Diego, CA, USA, December 1997. · Zbl 0889.65034
[14] Freund, R. W.; Nachtigal, N. M., Software for simplified Lanczos and QMR algorithms, Appl. Numer. Math., 19, 319-341 (1995) · Zbl 0853.65041
[15] Hochbruck, M.; Lubich, C., On Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 34, 1911-1925 (1997) · Zbl 0888.65032
[16] Iserles, A.; Zanna, A., Efficient computation of the matrix exponential by generalized polar decompositions, SIAM J. Numer. Anal., 42, 2218-2256 (2005) · Zbl 1084.65040
[17] Kwakernaak, H.; Sivan, R., Linear Optimal Control Systems (1972), Wiley-Interscience: Wiley-Interscience New York · Zbl 0276.93001
[18] Leimkuhler, B. J.; VanVleck, E. S., Orthosymplectic integration of linear Hamiltonian systems, Numer. Math., 77, 269-282 (1997) · Zbl 0880.65053
[19] Lopez, L.; Simoncini, V., Preserving geometric properties of the exponential matrix by block Krylov subspace methods, BIT, 46, 813-830 (2006) · Zbl 1107.65039
[20] Saad, Y., Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 29, 209-228 (1992) · Zbl 0749.65030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.