×

Parallel adaptive solution of coupled Rayleigh-Bénard-Marangoni problems with the Navier-slip. (English) Zbl 1328.76044

Summary: This study deals with modeling certain nonlinear interactions that give rise to cellular flow in heated thin fluid layers with thermocapillary surface-tension at the free surface. Of particular interest in these Rayleigh-Bénard-Marangoni studies is the effect of varying roughness (stick and slip) on the base or sides of the fluid container. This stick-slip behavior at container boundaries and thermocapillary shear stress at the free surface may lead to strongly varying local gradients in the solution that are addressed here using local adaptive mesh refinement. In turn, these local effects influence the global structure of cell patterns resulting from competing buoyancy, surface-tension and stick-slip effects. This behavior is illustrated by the results of numerical simulations of cellular flow structure in containers of varying aspect ratio and with spatially varying base boundary treatments. Details of the Navier-slip approximation and the adaptive mesh refinement strategy are given, together with a brief description of the relevant features of the parallel adaptive software framework, LibMesh, and associated algorithms employed in the present simulations.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76R10 Free convection
76D45 Capillarity (surface tension) for incompressible viscous fluids
80A20 Heat and mass transfer, heat flow (MSC2010)
65Y05 Parallel numerical computation

Software:

libMesh; UG
Full Text: DOI

References:

[1] Koschmieder, Bénard Cells and Taylor Vortices (1993)
[2] Cliffe, A numerical and experimental study of anomalous modes in the Taylor experiment, Journal of Fluid Mechanics 153 pp 243– (1986) · Zbl 0584.76117 · doi:10.1017/S0022112085001240
[3] Andereck, Flow regimes in a circular couette system with independently rotating cylinders, Journal of Fluid Mechanics 164 pp 155– (1986) · doi:10.1017/S0022112086002513
[4] Ouyang, Transition from a uniform state to hexagonal and striped Turing patterns, Nature 352 pp 610– (1991) · doi:10.1038/352610a0
[5] Lee, Pattern formation by interacting chemical fronts, Science 261 pp 192– (1993) · doi:10.1126/science.261.5118.192
[6] Lee, Experimental observation of self-replicating spots in a reaction-diffusion system, Nature 369 pp 215– (1994) · doi:10.1038/369215a0
[7] Lin, Resonant phase patterns in a reaction-diffusion system, Physical Review Letters 84 (18) pp 4240– (2000) · doi:10.1103/PhysRevLett.84.4240
[8] Bénard, Les tourbillons cellulaires dans une nappe liquide, Revue Générale des Sciences Pures et Appliquees 11 pp 1261– (1900)
[9] Bénard, Les tourbillons cellulaires dans une nappe liquide transportant dela chaleur par convection en regime permenant, Annales de Chimie Et de Physique 23 pp 62– (1901)
[10] Rayleigh, On convection currents in a horizontal layer of fluid when the higher temperature is on the under side, Philosophical Magazine 32 pp 529– (1916) · JFM 46.1249.04 · doi:10.1080/14786441608635602
[11] Block, Surface tension as the cause of bénard cells and surface deformation in a liquid film, Nature 178 pp 650– (1956) · doi:10.1038/178650a0
[12] Pearson, On convection cells induced by surface tension, Journal of Fluid Mechanics 4 pp 489– (1958) · Zbl 0082.18804 · doi:10.1017/S0022112058000616
[13] Nield, Surface tension and buoyancy effects in cellular convection, Journal of Fluid Mechanics 19 pp 341– (1964) · Zbl 0123.42204 · doi:10.1017/S0022112064000763
[14] Marangoni CGM On the expansion of a drop of liquid floating on the surface of another liquid 1865
[15] Scriven, The Marangoni effects, Nature 187 pp 186– (1960) · doi:10.1038/187186a0
[16] Koschmieder, Onset of surface-tension-driven Bénard convection, Journal of Fluid Mechanics 167 pp 49– (1986) · doi:10.1017/S0022112086002720
[17] Koschmieder, Surface-tension-driven Bénard convection in small containers, Journal of Fluid Mechanics 215 pp 571– (1990) · doi:10.1017/S0022112090002762
[18] Rahal, Bénard Marangoni convection in a small circular container: influence of the Biot and Prandtl numbers on pattern dynamics and free surface deformation, Experiments in Fluids 43 pp 547– (2007) · doi:10.1007/s00348-007-0323-1
[19] Assemat, Nonlinear Marangoni convection in circular and elliptical cylinders, Physics of Fluids 19 (10) (2007) · Zbl 1182.76034 · doi:10.1063/1.2771566
[20] Schatz, Time-independent square patterns in surface-tension-driven Bénard convection, Physics of Fluids 11 (9) pp 2577– (1999) · Zbl 1149.76532 · doi:10.1063/1.870120
[21] Vanhook, Long-wavelength surface-tension-driven Bénard convection: experiment and theory, Journal of Fluid Mechanics 345 pp 45– (1997) · Zbl 0927.76036 · doi:10.1017/S0022112097006101
[22] Schatz, Onset of surface-tension-driven Bénard convection, Physical Review Letters 75 pp 1938– (1995) · doi:10.1103/PhysRevLett.75.1938
[23] Medale, Study of passive dye dispersion in convective hexagonal pattern, Journal of Physics Conference Series 64 (1) pp 6– (2007)
[24] Dijkstra, Surface tension driven cellular patterns in three-dimensional boxes-I: linear stability, Microgravity Science and Technology 7 (4) pp 307– (1995)
[25] Dijkstra, Surface tension driven cellular patterns in three-dimensional boxes-III: the formation of hexagonal patterns, Microgravity Science and Technology 8 (3) pp 155– (1995)
[26] Dijkstra, Structure of cellular patterns in Rayleigh-Bénard-Marangoni flow in two-dimensional containers with rigid side-walls, Journal of Fluid Mechanics 243 pp 73– (1992) · Zbl 0825.76219 · doi:10.1017/S0022112092002647
[27] Salinger, Computational bifurcation and stability studies of the 8:1 thermal cavity problem, International Journal for Numerical Methods in Fluids 40 pp 1059– (2002) · Zbl 1047.76053 · doi:10.1002/fld.392
[28] Shadid, Large-scale stabilized FE computational analysis of nonlinear steady-state transport/reaction systems, Computer Methods in Applied Mechanics and Engineering 195 pp 1846– (2006) · Zbl 1178.76240 · doi:10.1016/j.cma.2005.05.047
[29] Lehoucq, Large-scale eigenvalue calculations for stability analysis of steady flows on massively parallel computers, International Journal for Numerical Methods in Fluids 36 pp 309– (2001) · Zbl 1037.76036 · doi:10.1002/fld.135
[30] Burroughs, Linear stability of flow in a differentially heated cavity via large-scale eigenvale calculations, International Journal of Numerical Methods for Heat and Fluid Flow 14 (6) pp 803– (2004) · Zbl 1086.76511 · doi:10.1108/09615530410544328
[31] Carey, Parallel finite element solution of 3D Rayleigh-Bénard-Marangoni flows, International Journal for Numerical Methods in Fluids 31 pp 37– (1999) · Zbl 0984.76041 · doi:10.1002/(SICI)1097-0363(19990915)31:1<37::AID-FLD954>3.0.CO;2-S
[32] Barth, On a natural-convection benchmark problem in non-Newtonian fluids, Numerical Heat Transfer Part B: Fundamentals 50 (3) pp 193– (2006) · doi:10.1080/10407790500509009
[33] Dussan, The moving contact line: the slip boundary condition, Journal of Fluid Mechanics 77 pp 665– (1976) · Zbl 0341.76010 · doi:10.1017/S0022112076002838
[34] Cox, The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow, Journal of Fluid Mechanics 168 pp 169– (1986) · Zbl 0597.76102 · doi:10.1017/S0022112086000332
[35] Qian, Generalized Navier boundary condition for the moving contact line, Communications in Mathematical Sciences 1 (2) pp 333– (2003) · Zbl 1160.76340 · doi:10.4310/CMS.2003.v1.n2.a7
[36] Moffatt, Viscous sand resistive eddies near a sharp corner, Journal of Fluid Mechanics 18 pp 1– (1964) · Zbl 0118.20501 · doi:10.1017/S0022112064000015
[37] Matthews, Micro/nano sliding plate problem with Navier boundary condition, Zeitschrift Angewandte Mathematik und Physik 57 pp 875– (2006) · Zbl 1142.76360 · doi:10.1007/s00033-006-0067-4
[38] Richardson, On the no-slip boundary condition, Journal of Fluid Mechanics 59 pp 707– (1973) · Zbl 0265.76037 · doi:10.1017/S0022112073001801
[39] Zhao, Microfluidic chaotic stirrer utilizing induced charge electroosmosis, Physical Review E 75 (2007) · doi:10.1103/PhysRevE.75.066217
[40] Pit, Direct experimental evidence of slip in hexadecane: solid interfaces, Physical Review Letters 85 pp 980– (2000) · doi:10.1103/PhysRevLett.85.980
[41] Zhu, Rate-dependent slip of Newtonian liquid at smooth surfaces, Physical Review Letters 87 (9) (2001) · doi:10.1103/PhysRevLett.87.096105
[42] Yang, Effect of liquid slip in electrokinetic parallel-plate microchannel flow, Journal of Colloid and Interface Science 260 (1) pp 225– (2003) · doi:10.1016/S0021-9797(02)00158-3
[43] Tretheway, Apparent fluid slip at hydrophobic microchannel walls, Physics of Fluids 14 pp L9– (2002) · doi:10.1063/1.1432696
[44] Neto, Boundary slip in Newtonian liquids: a review of experimental studies, Reports of Progress in Physics 68 pp 2859– (2005) · doi:10.1088/0034-4885/68/12/R05
[45] John, Slip with friction and penetration with resistance boundary conditions for the Navier-Stokes equations-numerical tests and aspects of the implementation, Journal of Computational and Applied Mathematics 147 (2) pp 287– (2002) · Zbl 1021.76028 · doi:10.1016/S0377-0427(02)00437-5
[46] Kirk, libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations, Engineering with Computers 22 (3-4) pp 237– (2006) · doi:10.1007/s00366-006-0049-3
[47] Boussinesq, Théorie Analytique de la Chaleur 2 (1903)
[48] Oberbeck, Über die bewegungserscheinungen der atmosphaere, Sitzungsberichte der Königlich Preuszischen Akademie der Wissenschaften 1 pp 383– (1888)
[49] Navier, Mémoire sur les lois du mouvement des fluides, Mémoires de l’Académie Royale des Sciences de l’Institut de France VI pp 389– (1823)
[50] Maxwell, On stresses in rarefied gases arising from inequalities in temperature, Philosophical Transactions of the Royal Society of London 170 pp 231– (1879) · JFM 11.0777.01 · doi:10.1098/rstl.1879.0067
[51] Koplik, Corner flow in the sliding plate problem, Physics of Fluids 7 pp 3118– (1995) · Zbl 1026.76551 · doi:10.1063/1.868619
[52] Thompson, A general boundary condition for liquid flow at solid surfaces, Nature 389 pp 360– (1997) · doi:10.1038/39475
[53] White, Viscous Fluid Flow (1991)
[54] Cliffe, Marangoni-Bénard convection with a deformable free surface, Journal of Computational Physics 145 pp 193– (1998) · Zbl 0924.76101 · doi:10.1006/jcph.1998.5995
[55] de Luca, Surfactant effects on the dynamics of a thin liquid sheet, Journal of Fluid Mechanics 300 pp 71– (1995) · doi:10.1017/S0022112095003612
[56] Wang, On Marangoni effects in a heated thin fluid layer with a monolayer surfactant. Part I: model development and stability analysis, International Journal for Numerical Methods in Fluids 48 (1) pp 1– (2005) · Zbl 1063.76033 · doi:10.1002/fld.815
[57] Wang, On Marangoni effects in a heated thin fluid layer with a monolayer surfactant. Part II: finite element formulation and numerical studies, International Journal for Numerical Methods in Fluids 48 (1) pp 17– (2005) · Zbl 1063.76034 · doi:10.1002/fld.814
[58] Cuvelier, Thermocapillary free boundaries in crystal growth, Journal of Fluid Mechanics 169 pp 1– (1986) · Zbl 0623.76099 · doi:10.1017/S0022112086000526
[59] Hardy, The surface tension for liquid gallium, Journal of Crystal Growth 71 pp 602– (1985) · doi:10.1016/0022-0248(85)90367-7
[60] Davis, Energy stability theory for free-surface problems-buoyancy-thermocapillary layers, Journal of Fluid Mechanics 98 pp 527– (1980) · Zbl 0434.76039 · doi:10.1017/S0022112080000274
[61] Scriven, On cellular convection driven by surface-tension gradients: effects of mean surface tension and surface viscosity, Journal of Fluid Mechanics 19 pp 321– (1964) · Zbl 0123.42203 · doi:10.1017/S0022112064000751
[62] Davis, Buoyancy-surface tension instability by the method of energy, Journal of Fluid Mechanics 39 pp 347– (1969) · Zbl 0214.25404 · doi:10.1017/S0022112069002217
[63] Regnier, Linear and nonlinear Rayleigh-Bénard-Marangoni instability with surface deformations, Physics of Fluids 12 pp 2787– (2000) · Zbl 1184.76448 · doi:10.1063/1.1313564
[64] Johnson, Geometric effects on convective coupling and interfacial structures in bilayer convection, Physical Review E 56 pp 5462– (1997) · doi:10.1103/PhysRevE.56.5462
[65] Juel, Surface tension-driven convection patterns in two liquid layers, Physica D Nonlinear Phenomena 143 pp 169– (2000) · Zbl 1096.76509 · doi:10.1016/S0167-2789(00)00100-7
[66] Gresho, Incompressible Flow and the Finite Element Method (1998) · Zbl 0941.76002
[67] Karypis, A parallel algorithm for multilevel graph partitioning and sparse matrix reordering, Parallel and Distributed Computing 48 pp 71– (1998) · doi:10.1006/jpdc.1997.1403
[68] Balay, Modern Software Tools in Scientific Computing pp 163– (1997) · doi:10.1007/978-1-4612-1986-6_8
[69] Cross, Why you should consider object-oriented programming techniques for finite element methods, International Journal of Numerical Methods for Heat and Fluid Flow 9 (3) pp 333– (1999) · Zbl 0948.76037 · doi:10.1108/09615539910260176
[70] Bangerth W Using modern features of C++ for adaptive finite element methods: dimension-independent programming in deal.II
[71] Budge K Peery J citeseer.ist.psu.edu/414680.html
[72] Devloo, Object oriented design philosophy for scientific computing, Mathematical Modelling and Numerical Analysis 36 pp 793– (2002) · Zbl 1024.65110 · doi:10.1051/m2an:2002041
[73] Bastian, UG-a flexible software toolbox for solving partial differential equations, Computing and Visualization in Science 1 pp 27– (1997) · Zbl 0970.65129 · doi:10.1007/s007910050003
[74] Zienkiewicz, A simple error estimator and adaptive procedure for practical engineering analysis, International Journal for Numerical Methods in Engineering 24 pp 337– (1987) · Zbl 0602.73063 · doi:10.1002/nme.1620240206
[75] Bangerth, Adaptive Finite ElementMethods for Differential Equations (2003) · doi:10.1007/978-3-0348-7605-6
[76] Ainsworth, A Posteriori Error Estimation in Finite Element Analysis (2000) · Zbl 1008.65076 · doi:10.1002/9781118032824
[77] Babuška, A posteriori error estimates for the finite element method, International Journal for Numerical Methods in Engineering 12 pp 1597– (1978) · Zbl 0396.65068 · doi:10.1002/nme.1620121010
[78] Carey, Modeling error and constitutive relations in simulation of flow and transport, International Journal for Numerical Methods in Fluids 46 (12) pp 1211– (2004) · Zbl 1064.76064 · doi:10.1002/fld.797
[79] Anderson, Analysis of parameter sensitivity and experimental design for a class of nonlinear partial differential equations, International Journal for Numerical Methods in Fluids 48 pp 583– (2005) · Zbl 1128.76316 · doi:10.1002/fld.938
[80] Kelly, A posteriori error analysis and adaptive processes in the finite element method: part I error analysis, International Journal for Numerical Methods in Engineering 19 pp 1593– (1983) · Zbl 0534.65068 · doi:10.1002/nme.1620191103
[81] Carey, A posteriori analysis and adaptive error control for operator decomposition solution of elliptic systems I: triangular systems, SIAM Journal on Numerical Analysis 47 (1) pp 740– (2009) · Zbl 1186.65142 · doi:10.1137/070689917
[82] Carey, Mesh refinement and iterative solution methods for finite element computations, International Journal for Numerical Methods in Engineering 17 pp 1717– (1981) · Zbl 0469.73056 · doi:10.1002/nme.1620171110
[83] Aftosmis MJ Berger MJ Multilevel error estimation and adaptive h -refinement for cartesian meshes with embedded boundaries 2002
[84] Peterson, Adaptive finite element methodology for tumor angiogenesis modeling, International Journal for Numerical Methods in Engineering 69 (6) pp 1212– (2007) · Zbl 1194.74461 · doi:10.1002/nme.1802
[85] Ondarçuhu, Dynamical patterns in Bénard-Marangoni convection in a square container, Physical Review Letters 70 pp 3892– (1993) · doi:10.1103/PhysRevLett.70.3892
[86] Ondarçuhu, Bénard-Marangoni convective patterns in small cylindrical layers, Physical Review E 48 pp 1051– (1993) · doi:10.1103/PhysRevE.48.1051
[87] Maza, Bénard-Marangoni convection in small aspect ratio containers, Physica Scripta Volume T 67 pp 82– (1996) · doi:10.1088/0031-8949/1996/T67/016
[88] Johnson, Experimental observation of dynamic mode switching in interfacial-tension-driven convection near a codimension-two point, Physical Review E 54 (4) pp 3102– (1996) · doi:10.1103/PhysRevE.54.R3102
[89] Mancini, Bénard-Marangoni thermal oscillators: an experimental study, Physical Review E 55 pp 2757– (1997) · doi:10.1103/PhysRevE.55.2757
[90] Ramon, Patterns in small aspect ratio Bénard-Marangoni convection, Physical Review E 60 pp 4193– (1999) · doi:10.1103/PhysRevE.60.4193
[91] Ramon, Hexagonal structure in intermediate aspect ratio Bénard-Marangoni convection, International Jounal of Bifurcation and Chaos 11 (11) pp 2779– (2001) · doi:10.1142/S0218127401003899
[92] Pasquetti, Laboratory and numerical investigations on Bénard-Marangoni convection in circular vessels, Physics of Fluids 14 pp 277– (2002) · Zbl 1184.76418 · doi:10.1063/1.1424307
[93] Dauby, Bénard-Marangoni instability in rigid rectangular containers, Journal of Fluid Mechanics 329 pp 25– (1996) · Zbl 0887.76025 · doi:10.1017/S0022112096008816
[94] Dauby, Linear Bénard-Marangoni instability in rigid circular containers, Physical Review E 56 pp 520– (1997) · doi:10.1103/PhysRevE.56.520
[95] Bergeon, Three dimensional Marangoni-Bénard flows in square and nearly square containers, Physics of Fluids 13 pp 92– (2001) · Zbl 1184.76050 · doi:10.1063/1.1329905
[96] Medale, Numerical simulation of Bénard-Marangoni convection in small aspect ratio containers, Numerical Heat Transfer A 42 pp 55– (2002) · doi:10.1080/10407780290059422
[97] Peterson JW 2003 http://www.cfdlab.ae.utexas.edu/peterson/masters.pdf
[98] Peterson JW 2008 http://www.cfdlab.ae.utexas.edu/peterson/diss.pdf
[99] Dean, On the steady state motion of inviscid liquid in a corner, Proceedings of the Cambridge Philosophical Society 45 pp 389– (1949) · doi:10.1017/S0305004100025019
[100] Michael, The separation of a viscous liquid at a straight edge, Mathematica 5 pp 82– (1958) · Zbl 0088.42101
[101] Richardson, A ’stick-slip’ problem related to the motion of a free jet at low reynolds numbers, Proceedings of the Cambridge Philosophical Society 67 pp 477– (1970) · Zbl 0198.30202 · doi:10.1017/S0305004100045758
[102] Georgiou, A singular finite element for Stokes flow: the stick-slip problem, International Journal for Numerical Methods in Fluids 9 (11) pp 1353– (1989) · Zbl 0683.76035 · doi:10.1002/fld.1650091105
[103] Albensoeder, Accurate three-dimensional lid-driven cavity flow, Journal of Computational Physics 206 pp 536– (2005) · Zbl 1121.76366 · doi:10.1016/j.jcp.2004.12.024
[104] Gomilko, On steady stokes flow in a trihedral rectangular corner, Journal of Fluid Mechanics 476 pp 159– (2003) · Zbl 1163.76343 · doi:10.1017/S0022112002003026
[105] Vanhook, Long-wavelength instability in surface-tension-driven Bénard convection, Physical Review Letters 75 pp 4397– (1995) · doi:10.1103/PhysRevLett.75.4397
[106] Boos, Cascade of structures in long-wavelength Marangoni instability, Physics of Fluids 11 (6) pp 1484– (1999) · Zbl 1147.76333 · doi:10.1063/1.870011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.