×

A review on quantum approximate optimization algorithm and its variants. (English) Zbl 07855964

Summary: The Quantum Approximate Optimization Algorithm (QAOA) is a highly promising variational quantum algorithm that aims to solve combinatorial optimization problems that are classically intractable. This comprehensive review offers an overview of the current state of QAOA, encompassing its performance analysis in diverse scenarios, its applicability across various problem instances, and considerations of hardware-specific challenges such as error susceptibility and noise resilience. Additionally, we conduct a comparative study of selected QAOA extensions and variants, while exploring future prospects and directions for the algorithm. We aim to provide insights into key questions about the algorithm, such as whether it can outperform classical algorithms and under what circumstances it should be used. Towards this goal, we offer specific practical points in a form of a short guide.

MSC:

81-XX Quantum theory
82-XX Statistical mechanics, structure of matter

Software:

TensorFlow; MQLib

References:

[1] McClean, Jarrod R.; Romero, Jonathan; Babbush, Ryan; Aspuru-Guzik, Alán, The theory of variational hybrid quantum-classical algorithms, New J. Phys., 18, 2, Article 023023 pp., 2016 · Zbl 1456.81149
[2] Bharti, Kishor; Cervera-Lierta, Alba; Kyaw, Thi Ha; Haug, Tobias; Alperin-Lea, Sumner; Anand, Abhinav; Degroote, Matthias; Heimonen, Hermanni; Kottmann, Jakob S.; Menke, Tim; Mok, Wai-Keong; Sim, Sukin; Kwek, Leong-Chuan; Aspuru-Guzik, Alán, Noisy intermediate-scale quantum algorithms, Rev. Modern Phys., 94, 1, Article 015004 pp., 2022, ISSN: 1539-0756
[3] Cerezo, M.; Arrasmith, Andrew; Babbush, Ryan; Benjamin, Simon C.; Endo, Suguru; Fujii, Keisuke; McClean, Jarrod R.; Mitarai, Kosuke; Yuan, Xiao; Cincio, Lukasz; Coles, Patrick J., Variational quantum algorithms, Nat. Rev. Phys., 3, 9, 625-644, 2021
[4] Bravo-Prieto, Carlos; LaRose, Ryan; Cerezo, M.; Subasi, Yigit; Cincio, Lukasz; Coles, Patrick J., Variational quantum linear solver, 2020
[5] Jiang, Zhang; Rieffel, Eleanor G.; Wang, Zhihui, Near-optimal quantum circuit for Grover’s unstructured search using a transverse field, Phys. Rev. A, 95, 6, Article 062317 pp., 2017, ISSN: 2469-9934
[6] Baaquie, Belal Ehsan; Kwek, Leong-Chuan, Quantum-classical hybrid algorithms, (Baaquie, Belal Ehsan; Kwek, Leong-Chuan, Quantum Computers: Theory and Algorithms, 2023, Springer Nature: Springer Nature Singapore), 249-256 · Zbl 1521.68002
[7] Kokail, C.; Maier, C.; van Bijnen, R.; Brydges, T.; Joshi, M. K.; Jurcevic, P.; Muschik, C. A.; Silvi, P.; Blatt, R.; Roos, C. F.; Zoller, P., Self-verifying variational quantum simulation of lattice models, Nature, 569, 7756, 355-360, 2019, ISSN: 1476-4687
[8] Bauer, Bela; Bravyi, Sergey; Motta, Mario; Chan, Garnet Kin-Lic, Quantum algorithms for quantum chemistry and quantum materials science, Chem. Rev., 120, 22, 12685-12717, 2020, ISSN: 1520-6890
[9] Lloyd, Seth; Schuld, Maria; Ijaz, Aroosa; Izaac, Josh; Killoran, Nathan, Quantum embeddings for machine learning, 2020
[10] Delgado, Alain; Arrazola, Juan Miguel; Jahangiri, Soran; Niu, Zeyue; Izaac, Josh; Roberts, Chase; Killoran, Nathan, Variational quantum algorithm for molecular geometry optimization, Phys. Rev. A, 104, 5, Article 052402 pp., 2021, ISSN: 2469-9934
[11] Amaro, David; Modica, Carlo; Rosenkranz, Matthias; Fiorentini, Mattia; Benedetti, Marcello; Lubasch, Michael, Filtering variational quantum algorithms for combinatorial optimization, Quantum Sci. Technol., 7, 1, Article 015021 pp., 2022
[12] Farhi, Edward; Goldstone, Jeffrey; Gutmann, Sam, A quantum approximate optimization algorithm, 2014
[13] Farhi, Edward; Goldstone, Jeffrey; Gutmann, Sam, A quantum approximate optimization algorithm applied to a bounded occurrence constraint problem, 2015
[14] Choi, Jaeho; Kim, Joongheon, A tutorial on quantum approximate optimization algorithm (QAOA): Fundamentals and applications, (2019 International Conference on Information and Communication Technology Convergence. 2019 International Conference on Information and Communication Technology Convergence, ICTC, 2019), 138-142
[15] Zhou, Leo; Wang, Sheng-Tao; Choi, Soonwon; Pichler, Hannes; Lukin, Mikhail D., Quantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devices, Phys. Rev. X, 10, 2, Article 021067 pp., 2020
[16] Streif, Michael; Yarkoni, Sheir; Skolik, Andrea; Neukart, Florian; Leib, Martin, Beating classical heuristics for the binary paint shop problem with the quantum approximate optimization algorithm, Phys. Rev. A, 104, 1, Article 012403 pp., 2021, ISSN: 2469-9934
[17] Borle, Ajinkya; Elfving, Vincent; Lomonaco, Samuel J., Quantum approximate optimization for hard problems in linear algebra, Scixpost Phys. Core, 4, 4, 031, 2021
[18] Awasthi, Abhishek; Bär, Francesco; Doetsch, Joseph; Ehm, Hans; Erdmann, Marvin; Hess, Maximilian; Klepsch, Johannes; Limacher, Peter A.; Luckow, Andre; Niedermeier, Christoph; Palackal, Lilly; Pfeiffer, Ruben; Ross, Philipp; Safi, Hila; Schönmeier-Kromer, Janik; von Sicard, Oliver; Wenger, Yannick; Wintersperger, Karen; Yarkoni, Sheir, Quantum computing techniques for multi-knapsack problems, 2023
[19] Moussa, Charles; Wang, Hao; Bäck, Thomas; Dunjko, Vedran, Unsupervised strategies for identifying optimal parameters in quantum approximate optimization algorithm, EPJ Quantum Technol., 9, 1, 11, 2022, ISSN: 2196-0763
[20] Hodson, Mark; Ruck, Brendan; Ong, Hugh; Garvin, David; Dulman, Stefan, Portfolio rebalancing experiments using the quantum alternating operator Ansatz, 2019
[21] Baker, Jack S.; Radha, Santosh Kumar, Wasserstein solution quality and the quantum approximate optimization algorithm: A portfolio optimization case study, 2022
[22] Vikstål, Pontus; Grönkvist, Mattias; Svensson, Marika; Andersson, Martin; Johansson, Göran; Ferrini, Giulia, Applying the quantum approximate optimization algorithm to the tail-assignment problem, Phys. Rev. Applied, 14, 3, Article 034009 pp., 2020
[23] Li, Junde; Alam, Mahabubul; Saki, Abdullah Ash; Ghosh, Swaroop, Hierarchical improvement of quantum approximate optimization algorithm for object detection: (Invited paper), (2020 21st International Symposium on Quality Electronic Design. 2020 21st International Symposium on Quality Electronic Design, ISQED, 2020), 335-340
[24] Cui, Jingjing; Xiong, Yifeng; Ng, Soon Xin; Hanzo, Lajos, Quantum approximate optimization algorithm based maximum likelihood detection, 2021
[25] Niroula, Pradeep; Shaydulin, Ruslan; Yalovetzky, Romina; Minssen, Pierre; Herman, Dylan; Hu, Shaohan; Pistoia, Marco, Constrained quantum optimization for extractive summarization on a trapped-ion quantum computer, 2022
[26] Ebadi, S.; Keesling, A.; Cain, M.; Wang, T. T.; Levine, H.; Bluvstein, D.; Semeghini, G.; Omran, A.; Liu, J.-G.; Samajdar, R.; Luo, X.-Z.; Nash, B.; Gao, X.; Barak, B.; Farhi, E.; Sachdev, S.; Gemelke, N.; Zhou, L.; Choi, S.; Pichler, H.; Wang, S.-T.; Greiner, M.; Vuletić, V.; Lukin, M. D., Quantum optimization of maximum independent set using Rydberg atom arrays, Science, 376, 6598, 1209-1215, 2022
[27] Anschuetz, Eric R.; Olson, Jonathan P.; Aspuru-Guzik, Alán; Cao, Yudong, Variational quantum factoring, 2018
[28] Karamlou, Amir H.; Simon, William A.; Katabarwa, Amara; Scholten, Travis L.; Peropadre, Borja; Cao, Yudong, Analyzing the performance of variational quantum factoring on a superconducting quantum processor, npj Quantum Inf., 7, 1, 156, 2021
[29] Mustafa, Hasan; Morapakula, Sai Nandan; Jain, Prateek; Ganguly, Srinjoy, Variational quantum algorithms for chemical simulation and drug discovery, 2022
[30] Choi, Jaeho; Oh, Seunghyeok; Kim, Joongheon, Quantum approximation for wireless scheduling, Appl. Sci., 10, 20, 7116, 2020
[31] Villalba-Diez, Javier; González-Marcos, Ana; Ordieres-Meré, Joaquín B., Improvement of quantum approximate optimization algorithm for max-cut problems, Sensors, 22, 1, 244, 2021
[32] Korte, Bernhard; Vygen, Jens, Combinatorial optimization, (Algorithms and Combinatorics, vol. 21, 2012, Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), ISBN: 978-3-642-24488-9 · Zbl 1237.90001
[33] Hammer, Peter L.; Rudeanu, Sergiu, Boolean methods in operations research and related areas, (Ökonometrie Und Unternehmensforschung / Econometrics and Operations Research, vol. 7, 1968, Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), ISBN: 978-3-642-85823-9 · Zbl 0155.28001
[34] Ausiello, Giorgio; Marchetti-Spaccamela, Alberto; Crescenzi, Pierluigi; Gambosi, Giorgio; Protasi, Marco; Kann, Viggo, (Complexity and Approximation, 1999, Springer: Springer Berlin, Heidelberg), ISBN: 978-3-642-58412-1 · Zbl 0937.68002
[35] Vazirani, Vijay V., Approximation Algorithms, 2003, Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg, ISBN: 978-3-662-04565-7
[36] Khot, Subhash, Inapproximability of NP-complete problems, discrete Fourier analysis, and geometry, (Proceedings of the International Congress of Mathematicians 2010 (ICM 2010), 2011, Published by Hindustan Book Agency (HBA), India. WSPC Distribute for All Markets Except in India), 2676-2697 · Zbl 1252.68143
[37] Kochenberger, Gary A.; Glover, Fred; Alidaee, Bahram; Rego, Cesar, A unified modeling and solution framework for combinatorial optimization problems, OR Spectrum, 26, 2, 237-250, 2004 · Zbl 1160.90706
[38] Date, Prasanna; Patton, Robert; Schuman, Catherine; Potok, Thomas, Efficiently embedding QUBO problems on adiabatic quantum computers, Quantum Inf. Process., 18, 4, 117, 2019 · Zbl 1417.81081
[39] Tabi, Zsolt; El-Safty, Kareem H.; Kallus, Zsófia; Hága, Péter; Kozsik, Tamás; Glos, Adam; Zimborás, Zoltán, Quantum optimization for the graph coloring problem with space-efficient embedding, (2020 IEEE International Conference on Quantum Computing and Engineering. 2020 IEEE International Conference on Quantum Computing and Engineering, QCE, 2020), 56-62
[40] Fred Glover, Gary Kochenberger, Yu Du, Quantum Bridge Analytics I: A Tutorial on Formulating and Using QUBO Models, p. 46.
[41] Lucas, Andrew, Ising formulations of many NP problems, Front. Phys., 2, 2014
[42] Lodewijks, Bas, Mapping NP-hard and NP-complete optimisation problems to quadratic unconstrained binary optimisation problems, 2020
[43] Mohseni, Naeimeh; McMahon, Peter L.; Byrnes, Tim, Ising machines as hardware solvers of combinatorial optimization problems, 2022, arXiv:2204.00276. [physics, physics:quant-ph]
[44] Babbush, Ryan; O’Gorman, Bryan; Aspuru-Guzik, Alán, Resource efficient gadgets for compiling adiabatic quantum optimization problems, Ann. Der Phys., 525, 10-11, 877-888, 2013, ISSN: 1521-3889 · Zbl 1279.81041
[45] Herrman, Rebekah; Ostrowski, James; Humble, Travis S.; Siopsis, George, Lower bounds on circuit depth of the quantum approximate optimization algorithm, Quantum Inf. Process., 20, 2, 59, 2021, ISSN: 1573-1332 · Zbl 1509.81271
[46] Lechner, Wolfgang; Hauke, Philipp; Zoller, Peter, A quantum annealing architecture with all-to-all connectivity from local interactions, Sci. Adv., 1, 9, Article e1500838 pp., 2015
[47] Leib, Martin; Zoller, Peter; Lechner, Wolfgang, A transmon quantum annealer: Decomposing many-body ising constraints into pair interactions, Quantum Sci. Technol., 1, 1, Article 015008 pp., 2016
[48] Lechner, Wolfgang, Quantum approximate optimization with parallelizable gates, IEEE Trans. Quantum Eng., 1, 1-6, 2020
[49] Kochenberger, Gary; Hao, Jin-Kao; Glover, Fred; Lewis, Mark; Lü, Zhipeng; Wang, Haibo; Wang, Yang, The unconstrained binary quadratic programming problem: A survey, J. Comb. Optim., 28, 1, 58-81, 2014 · Zbl 1303.90066
[50] Håstad, Johan, Some optimal inapproximability results, J. ACM, 48, 4, 798-859, 2001 · Zbl 1127.68405
[51] Karloff, Howard, How good is the Goemans-Williamson MAX CUT Algorithm?, SIAM J. Comput., 29, 1, 336-350, 1999 · Zbl 0942.90033
[52] Goemans, Michel X., Worst-case comparison of valid inequalities for the TSP, Math. Program., 69, 1-3, 335-349, 1995, ISSN: 1436-4646 · Zbl 0844.90101
[53] Nocedal, Jorge; Wright, Stephen J., Numerical optimization, (Springer Series in Operation Research and Financial Engineering, 2006, Springer: Springer New York, NY), ISBN: 978-1-4939-3711-0 · Zbl 1104.65059
[54] Boyd, Stephen P.; Vandenberghe, Lieven, Convex Optimization, 2004, Cambridge University Press: Cambridge University Press Cambridge, UK , New York · Zbl 1058.90049
[55] Clausen, Jens, Branch and Bound Algorithms-Principles and Examples, 1-30, 1999, Department of Computer Science, University of Copenhagen
[56] Vanderbei, Robert J.; Shanno, David F., Comput. Optim. Appl., 13, 1/3, 231-252, 1999 · Zbl 1040.90564
[57] Goemans, Michel X.; Williamson, David P., Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming, J. ACM, 42, 6, 1115-1145, 1995, ISSN: 1557-735X · Zbl 0885.68088
[58] Khot, Subhash; Kindler, Guy; Mossel, Elchanan; O’Donnell, Ryan, Optimal inapproximability results for MAX-CUT and other 2-variable CSPs?, SIAM J. Comput., 37, 1, 319-357, 2007 · Zbl 1135.68019
[59] Weigold, Manuela; Barzen, Johanna; Leymann, Frank; Vietz, Daniel, Patterns for hybrid quantum algorithms, (Barzen, Johanna, Service-Oriented Computing, vol. 1429, 2021, Springer International Publishing: Springer International Publishing Cham), 34-51, ISBN: 978-3-030-87568-8
[60] Tilly, Jules; Chen, Hongxiang; Cao, Shuxiang; Picozzi, Dario; Setia, Kanav; Li, Ying; Grant, Edward; Wossnig, Leonard; Rungger, Ivan; Booth, George H.; Tennyson, Jonathan, The variational quantum eigensolver: A review of methods and best practices, Phys. Rep., 986, 1-128, 2022 · Zbl 1510.81052
[61] Fedorov, Dmitry A.; Peng, Bo; Govind, Niranjan; Alexeev, Yuri, VQE method: A short survey and recent developments, Mater Theory, 6, 1, 2, 2022
[62] Anand, Abhinav; Schleich, Philipp; Alperin-Lea, Sumner; Jensen, Phillip W. K.; Sim, Sukin; Díaz-Tinoco, Manuel; Kottmann, Jakob S.; Degroote, Matthias; Izmaylov, Artur F.; Aspuru-Guzik, Alán, A quantum computing view on unitary coupled cluster theory, Chem. Soc. Rev., 51, 5, 1659-1684, 2022, ISSN: 1460-4744
[63] Cruzeiro, Vinícius Wilian D.; Roitberg, Adrian; Polfer, Nicolas C., Interactively applying the variational method to the dihydrogen molecule: Exploring bonding and antibonding, J. Chem. Educ., 93, 9, 1578-1585, 2016, ISSN: 1938-1328
[64] Kandala, Abhinav; Mezzacapo, Antonio; Temme, Kristan; Takita, Maika; Brink, Markus; Chow, Jerry M.; Gambetta, Jay M., Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets, Nature, 549, 7671, 242-246, 2017
[65] Peruzzo, Alberto; McClean, Jarrod; Shadbolt, Peter; Yung, Man-Hong; Zhou, Xiao-Qi; Love, Peter J.; Aspuru-Guzik, Alán; O’Brien, Jeremy L., A variational eigenvalue solver on a photonic quantum processor, Nature Commun., 5, 1, 4213, 2014
[66] Sim, Sukin; Johnson, Peter D.; Aspuru-Guzik, Alán, Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms, Adv. Quantum Tech., 2, 12, Article 1900070 pp., 2019, ISSN: 2511-9044
[67] Sweke, Ryan; Wilde, Frederik; Meyer, Johannes; Schuld, Maria; Faehrmann, Paul K.; Meynard-Piganeau, Barthélémy; Eisert, Jens, Stochastic gradient descent for hybrid quantum-classical optimization, Quantum, 4, 314, 2020
[68] Wierichs, David; Izaac, Josh; Wang, Cody; Lin, Cedric Yen-Yu, General parameter-shift rules for quantum gradients, Quantum, 6, 677, 2022
[69] Otterbach, J. S.; Manenti, R.; Alidoust, N.; Bestwick, A.; Block, M.; Bloom, B.; Caldwell, S.; Didier, N.; Fried, E. Schuyler; Hong, S.; Karalekas, P.; Osborn, C. B.; Papageorge, A.; Peterson, E. C.; Prawiroatmodjo, G.; Rubin, N.; Ryan, Colm A.; Scarabelli, D.; Scheer, M.; Sete, E. A.; Sivarajah, P.; Smith, Robert S.; Staley, A.; Tezak, N.; Zeng, W. J.; Hudson, A.; Johnson, Blake R.; Reagor, M.; da Silva, M. P.; Rigetti, C., Unsupervised machine learning on a hybrid quantum computer, 2017
[70] Magann, Alicia B.; Rudinger, Kenneth M.; Grace, Matthew D.; Sarovar, Mohan, Feedback-based quantum optimization, Phys. Rev. Lett., 129, 25, Article 250502 pp., 2022, ISSN: 1079-7114
[71] Farhi, Edward; Goldstone, Jeffrey; Gutmann, Sam; Sipser, Michael, Quantum computation by adiabatic evolution, 2000
[72] Farhi, Edward; Goldstone, Jeffrey; Gutmann, Sam; Lapan, Joshua; Lundgren, Andrew; Preda, Daniel, A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem, Science, 292, 5516, 472-475, 2001 · Zbl 1226.81046
[73] Albash, Tameem; Lidar, Daniel A., Adiabatic quantum computation, Rev. Modern Phys., 90, 1, Article 015002 pp., 2018, ISSN: 1539-0756
[74] Crosson, Elizabeth; Farhi, Edward; Lin, Cedric Yen-Yu; Lin, Han-Hsuan; Shor, Peter, Different strategies for optimization using the quantum adiabatic algorithm, 2014
[75] McClean, Jarrod R.; Boixo, Sergio; Smelyanskiy, Vadim N.; Babbush, Ryan; Neven, Hartmut, Barren plateaus in quantum neural network training landscapes, Nature Commun., 9, 1, 4812, 2018
[76] Barraza, Nancy; Barrios, Gabriel Alvarado; Peng, Jie; Lamata, Lucas; Solano, Enrique; Albarrán-Arriagada, Francisco, Analog quantum approximate optimization algorithm, Quantum Sci. Technol., 7, 4, Article 045035 pp., 2022
[77] Li, YaoChong; Zhou, Ri-Gui; Xu, RuiQing; Luo, Jia; Hu, WenWen; Fan, Ping, Implementing graph-theoretic feature selection by quantum approximate optimization algorithm, IEEE Trans. Neural Netw. Learn. Syst., 1-14, 2022
[78] Proietti, Massimiliano; Cerocchi, Filippo; Dispenza, Massimiliano, Native measurement-based quantum approximate optimization algorithm applied to the Max K -cut problem, Phys. Rev. A, 106, 2, Article 022437 pp., 2022, ISSN: 2469-9934
[79] Rabinovich, Daniil; Adhikary, Soumik; Campos, Ernesto; Akshay, Vishwanathan; Anikin, Evgeny; Sengupta, Richik; Lakhmanskaya, Olga; Lakhmanskiy, Kiril; Biamonte, Jacob, Ion native variational Ansatz for quantum approximate optimization, Phys. Rev. A, 106, 3, Article 032418 pp., 2022, ISSN: 2469-9934
[80] Rajakumar, Joel; Moondra, Jai; Gard, Bryan; Gupta, Swati; Herold, Creston D., Generating target graph couplings for the quantum approximate optimization algorithm from native quantum hardware couplings, Phys. Rev. A, 106, 2, Article 022606 pp., 2022, ISSN: 2469-9934
[81] Herrman, Rebekah; Lotshaw, Phillip C.; Ostrowski, James; Humble, Travis S.; Siopsis, George, Multi-angle quantum approximate optimization algorithm, Sci. Rep., 12, 1, 6781, 2022
[82] Chalupnik, Michelle; Melo, Hans; Alexeev, Yuri; Galda, Alexey, Augmenting QAOA Ansatz with multiparameter problem-independent layer, (2022 IEEE International Conference on Quantum Computing and Engineering. 2022 IEEE International Conference on Quantum Computing and Engineering, QCE, 2022, IEEE: IEEE Broomfield, CO, USA), 97-103
[83] Chandarana, P.; Hegade, N. N.; Paul, Koushik; Albarrán-Arriagada, F.; Solano, Enrique; del Campo, A.; Chen, Xi, Digitized-counterdiabatic quantum approximate optimization algorithm, Phys. Rev. Res., 4, 1, Article 013141 pp., 2021
[84] Wurtz, Jonathan; Love, Peter J., Counterdiabaticity and the quantum approximate optimization algorithm, Quantum, 6, 635, 2022
[85] Yu, Yunlong; Cao, Chenfeng; Dewey, Carter; Wang, Xiang-Bin; Shannon, Nic; Joynt, Robert, Quantum approximate optimization algorithm with adaptive bias fields, Phys. Rev. Res., 4, 2, Article 023249 pp., 2022
[86] Zhu, Linghua; Tang, Ho Lun; Barron, George S.; Calderon-Vargas, F. A.; Mayhall, Nicholas J.; Barnes, Edwin; Economou, Sophia E., An adaptive quantum approximate optimization algorithm for solving combinatorial problems on a quantum computer, 2020
[87] Bravyi, Sergey; Kliesch, Alexander; Koenig, Robert; Tang, Eugene, Obstacles to variational quantum optimization from symmetry protection, Phys. Rev. Lett., 125, 26, Article 260505 pp., 2020, ISSN: 1079-7114
[88] Hadfield, Stuart; Wang, Zhihui; O’Gorman, Bryan; Rieffel, Eleanor G.; Venturelli, Davide; Biswas, Rupak, From the quantum approximate optimization algorithm to a quantum alternating operator Ansatz, Algorithms, 12, 2, 34, 2019 · Zbl 1461.68085
[89] Bärtschi, Andreas; Eidenbenz, Stephan, Grover mixers for QAOA: Shifting complexity from mixer design to state preparation, (2020 IEEE International Conference on Quantum Computing and Engineering. 2020 IEEE International Conference on Quantum Computing and Engineering, QCE, 2020), 72-82
[90] Golden, John; Bärtschi, Andreas; O’Malley, Daniel; Eidenbenz, Stephan, Threshold-based quantum optimization, (2021 IEEE International Conference on Quantum Computing and Engineering. 2021 IEEE International Conference on Quantum Computing and Engineering, QCE, 2021), 137-147
[91] Fuchs, Franz Georg; Lye, Kjetil Olsen; Møll Nilsen, Halvor; Stasik, Alexander Johannes; Sartor, Giorgio, Constraint preserving mixers for the quantum approximate optimization algorithm, Algorithms, 15, 6, 202, 2022
[92] Egger, Daniel J.; Marecek, Jakub; Woerner, Stefan, Warm-starting quantum optimization, Quantum, 5, 479, 2021
[93] Magann, Alicia B.; Rudinger, Kenneth M.; Grace, Matthew D.; Sarovar, Mohan, Lyapunov-control-inspired strategies for quantum combinatorial optimization, Phys. Rev. A, 106, 6, Article 062414 pp., 2022, ISSN: 2469-9934
[94] Yoshioka, Takuya; Sasada, Keita; Nakano, Yuichiro; Fujii, Keisuke, Fermionic quantum approximate optimization algorithm, 2023
[95] Wang, Zhen-Duo; Zheng, Pei-Lin; Wu, Biao; Zhang, Yi, Quantum dropout for efficient quantum approximate optimization algorithm on combinatorial optimization problems, 2022
[96] Wurtz, Jonathan; Love, Peter, Classically optimal variational quantum algorithms, 2021
[97] Shi, Kaiyan; Herrman, Rebekah; Shaydulin, Ruslan; Chakrabarti, Shouvanik; Pistoia, Marco; Larson, Jeffrey, Multi-angle QAOA does not always need all its angles, 2022
[98] Herrman, Rebekah, Relating the multi-angle quantum approximate optimization algorithm and continuous-time quantum walks on dynamic graphs, 2022
[99] Hastings, M. B., Classical and quantum bounded depth approximation algorithms, 2019
[100] Claeys, Pieter W.; Pandey, Mohit; Sels, Dries; Polkovnikov, Anatoli, Floquet-engineering counterdiabatic protocols in quantum many-body systems, Phys. Rev. Lett., 123, 9, Article 090602 pp., 2019, ISSN: 1079-7114
[101] Graß, Tobias, Quantum annealing with longitudinal bias fields, Phys. Rev. Lett., 123, 12, Article 120501 pp., 2019, ISSN: 1079-7114
[102] Guéry-Odelin, D.; Ruschhaupt, A.; Kiely, A.; Torrontegui, E.; Martínez-Garaot, S.; Muga, J. G., Shortcuts to adiabaticity: Concepts, methods, and applications, Rev. Modern Phys., 91, 4, Article 045001 pp., 2019, ISSN: 1539-0756
[103] Chai, Yahui; Han, Yong-Jian; Wu, Yu-Chun; Li, Ye; Dou, Menghan; Guo, Guo-Ping, Shortcuts to the quantum approximate optimization algorithm, Phys. Rev. A, 105, 4, Article 042415 pp., 2022, ISSN: 2469-9934
[104] Headley, David; Müller, Thorge; Martin, Ana; Solano, Enrique; Sanz, Mikel; Wilhelm, Frank K., Approximating the quantum approximate optimization algorithm with digital-analog interactions, Phys. Rev. A, 106, 4, Article 042446 pp., 2022, ISSN: 2469-9934
[105] Patel, Yash J.; Jerbi, Sofiene; Bäck, Thomas; Dunjko, Vedran, Reinforcement learning assisted recursive QAOA, 2022
[106] Bravyi, Sergey; Kliesch, Alexander; Koenig, Robert; Tang, Eugene, Hybrid quantum-classical algorithms for approximate graph coloring, Quantum, 6, 678, 2022
[107] Bae, Eunok; Lee, Soojoon, Recursive QAOA outperforms the original QAOA for the MAX-cut problem on complete graphs, 2023
[108] Hadfield, Stuart; Hogg, Tad; Rieffel, Eleanor G., Analytical framework for quantum alternating operator Ansätze, Quantum Sci. Technol., 8, 1, Article 015017 pp., 2022
[109] Ruan, Yue; Yuan, Zhiqiang; Xue, Xiling; Liu, Zhihao, Quantum approximate optimization for combinatorial problems with constraints, Inform. Sci., 619, 98-125, 2023 · Zbl 07834399
[110] Cook, Jeremy; Eidenbenz, Stephan; Bartschi, Andreas, The quantum alternating operator ansatz on maximum K-vertex cover, (2020 IEEE International Conference on Quantum Computing and Engineering. 2020 IEEE International Conference on Quantum Computing and Engineering, QCE, 2020, IEEE: IEEE Denver, CO, USA), 83-92
[111] Wang, Zhihui; Rubin, Nicholas C.; Dominy, Jason M.; Rieffel, Eleanor G., X Y mixers: Analytical and numerical results for the quantum alternating operator Ansatz, Phys. Rev. A, 101, 1, Article 012320 pp., 2020, ISSN: 2469-9934
[112] Grover, Lov K., A fast quantum mechanical algorithm for database search, (Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing. Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96, 1996, ACM Press: ACM Press Philadelphia, Pennsylvania, United States), 212-219 · Zbl 0922.68044
[113] Grover, Lov K., Fixed-point quantum search, Phys. Rev. Lett., 95, 15, Article 150501 pp., 2005, ISSN: 1079-7114 · Zbl 1255.81106
[114] Akshay, V.; Philathong, H.; Morales, M. E.S.; Biamonte, J., Reachability deficits in quantum approximate optimization, Phys. Rev. Lett., 124, 9, Article 090504 pp., 2020, ISSN: 1079-7114
[115] Govia, L. C.G.; Poole, C.; Saffman, M.; Krovi, H. K., Freedom of the mixer rotation axis improves performance in the quantum approximate optimization algorithm, Phys. Rev. A, 104, 6, Article 062428 pp., 2021
[116] Li, Li; Fan, Minjie; Coram, Marc; Riley, Patrick; Leichenauer, Stefan, Quantum optimization with a novel Gibbs objective function and Ansatz architecture search, Phys. Rev. Res., 2, 2, Article 023074 pp., 2020
[117] Lee, Xinwei; Saito, Yoshiyuki; Cai, Dongsheng; Asai, Nobuyoshi, Parameters fixing strategy for quantum approximate optimization algorithm, (2021 IEEE International Conference on Quantum Computing and Engineering. 2021 IEEE International Conference on Quantum Computing and Engineering, QCE, 2021), 10-16
[118] Jain, Nishant; Coyle, Brian; Kashefi, Elham; Kumar, Niraj, Graph neural network initialisation of quantum approximate optimisation, 2021
[119] Galda, Alexey; Liu, Xiaoyuan; Lykov, Danylo; Alexeev, Yuri; Safro, Ilya, Transferability of optimal QAOA parameters between random graphs, 2021
[120] Shaydulin, Ruslan; Safro, Ilya; Larson, Jeffrey, Multistart methods for quantum approximate optimization, (2019 IEEE High Performance Extreme Computing Conference. 2019 IEEE High Performance Extreme Computing Conference, HPEC, 2019, IEEE: IEEE Waltham, MA, USA), 1-8
[121] Shaydulin, Ruslan; Marwaha, Kunal; Wurtz, Jonathan; Lotshaw, Phillip C., QAOAKit: A toolkit for reproducible study, application, and verification of the QAOA, (2021 IEEE/ACM Second International Workshop on Quantum Computing Software. 2021 IEEE/ACM Second International Workshop on Quantum Computing Software, QCS, 2021), 64-71
[122] Sack, Stefan H.; Serbyn, Maksym, Quantum annealing initialization of the quantum approximate optimization algorithm, Quantum, 5, 491, 2021
[123] Fernández-Pendás, Mario; Combarro, Elías F.; Vallecorsa, Sofia; Ranilla, José; Rúa, Ignacio F., A study of the performance of classical minimizers in the quantum approximate optimization algorithm, J. Comput. Appl. Math., 404, Article 113388 pp., 2022 · Zbl 1482.90183
[124] Bonet-Monroig, Xavier; Wang, Hao; Vermetten, Diederick; Senjean, Bruno; Moussa, Charles; Bäck, Thomas; Dunjko, Vedran; O’Brien, Thomas E., Performance comparison of optimization methods on variational quantum algorithms, Phys. Rev. A, 107, 3, Article 032407 pp., 2023, ISSN: 2469-9934
[125] Pellow-Jarman, Aidan; Sinayskiy, Ilya; Pillay, Anban; Petruccione, Francesco, A comparison of various classical optimizers for a variational quantum linear solver, Quantum Inf. Process., 20, 6, 202, 2021 · Zbl 1509.81296
[126] Acampora, Giovanni; Chiatto, Angela; Vitiello, Autilia, Genetic algorithms as classical optimizer for the quantum approximate optimization algorithm, Appl. Soft Comput., 142, Article 110296 pp., 2023
[127] Dong, Yulong; Meng, Xiang; Lin, Lin; Kosut, Robert; Whaley, K. Birgitta, Robust control optimization for quantum approximate optimization algorithms, IFAC-PapersOnLine, 53, 2, 242-249, 2020
[128] Crooks, Gavin E., Performance of the quantum approximate optimization algorithm on the maximum cut problem, 2018, arXiv:1811.08419. [quant-ph]
[129] Streif, Michael; Leib, Martin, Training the quantum approximate optimization algorithm without access to a quantum processing unit, Quantum Sci. Technol., 5, 3, Article 034008 pp., 2020
[130] Sung, Kevin J.; Yao, Jiahao; Harrigan, Matthew P.; Rubin, Nicholas C.; Jiang, Zhang; Lin, Lin; Babbush, Ryan; McClean, Jarrod R., Using models to improve optimizers for variational quantum algorithms, Quantum Sci. Technol., 5, 4, Article 044008 pp., 2020
[131] Yao, Jiahao; Bukov, Marin; Lin, Lin, Policy gradient based quantum approximate optimization algorithm, (Proceedings of the First Mathematical and Scientific Machine Learning Conference, 2020, PMLR), 605-634
[132] Lotshaw, Phillip C.; Humble, Travis S.; Herrman, Rebekah; Ostrowski, James; Siopsis, George, Empirical performance bounds for quantum approximate optimization, Quantum Inf. Process., 20, 12, 403, 2021, ISSN: 1573-1332 · Zbl 1508.81496
[133] Alam, Mahabubul; Ash-Saki, Abdullah; Ghosh, Swaroop, Accelerating quantum approximate optimization algorithm using machine learning, (2020 Design, Automation & Test in Europe Conference & Exhibition. 2020 Design, Automation & Test in Europe Conference & Exhibition, DATE, 2020), 686-689
[134] Wang, Haibin; Zhao, Jiaojiao; Wang, Bosi; Tong, Lian; Yuan, Gonglin, A quantum approximate optimization algorithm with metalearning for MaxCut problem and its simulation via TensorFlow quantum, Math. Probl. Eng., 2021, 1-11, 2021, ISSN: 1024-123X
[135] Wilson, Max, Optimizing quantum heuristics with meta-learning, 14, 2021
[136] Deshpande, Ajinkya; Melnikov, Alexey, Capturing symmetries of quantum optimization algorithms using graph neural networks, Symmetry, 14, 12, 2593, 2022
[137] Khairy, Sami; Shaydulin, Ruslan; Cincio, Lukasz; Alexeev, Yuri; Balaprakash, Prasanna, Learning to optimize variational quantum circuits to solve combinatorial problems, AAAI, 34, 03, 2367-2375, 2020, ISSN: 2159-5399
[138] Skolik, Andrea; McClean, Jarrod R.; Mohseni, Masoud; van der Smagt, Patrick; Leib, Martin, Layerwise learning for quantum neural networks, Quantum Mach. Intell., 3, 1, 5, 2021, ISSN: 2524-4914
[139] Akshay, V.; Rabinovich, D.; Campos, E.; Biamonte, J., Parameter concentrations in quantum approximate optimization, Phys. Rev. A, 104, 1, L010401, 2021, ISSN: 2469-9934
[140] Shaydulin, Ruslan; Wild, Stefan M., Exploiting symmetry reduces the cost of training QAOA, IEEE Trans. Quantum Eng., 2, 1-9, 2021
[141] Shaydulin, Ruslan; Hadfield, Stuart; Hogg, Tad; Safro, Ilya, Classical symmetries and the quantum approximate optimization algorithm, Quantum Inf. Process., 20, 11, 359, 2021, ISSN: 1573-1332 · Zbl 1508.81530
[142] Wang, Zhihui; Hadfield, Stuart; Jiang, Zhang; Rieffel, Eleanor G., Quantum approximate optimization algorithm for MaxCut: A Fermionic view, Phys. Rev. A, 97, 2, Article 022304 pp., 2018, ISSN: 2469-9934
[143] Cheng, Lixue; Chen, Yu-Qin; Zhang, Shi-Xin; Zhang, Shengyu, Error-mitigated quantum approximate optimization via learning-based adaptive optimization, 2023
[144] Lockwood, Owen; Si, Mei, Reinforcement learning with quantum variational circuits, 2020, arXiv:2008.07524. [quant-ph, stat]
[145] Beloborodov, Dmitrii; Ulanov, A. E.; Foerster, Jakob N.; Whiteson, Shimon; Lvovsky, A. I., Reinforcement learning enhanced quantum-inspired algorithm for combinatorial optimization, 2020, arXiv:2002.04676. [cs, stat]
[146] Barkoutsos, Panagiotis Kl; Nannicini, Giacomo; Robert, Anton; Tavernelli, Ivano; Woerner, Stefan, Improving variational quantum optimization using CVaR, Quantum, 4, 256, 2020
[147] Dupont, Maxime; Didier, Nicolas; Hodson, Mark J.; Moore, Joel E.; Reagor, Matthew J., Entanglement perspective on the quantum approximate optimization algorithm, Phys. Rev. A, 106, 2, Article 022423 pp., 2022, ISSN: 2469-9934
[148] Zhang, Y. J.; Mu, X. D.; Liu, X. W.; Wang, X. Y.; Zhang, X.; Li, K.; Wu, T. Y.; Zhao, D.; Dong, C., Applying the quantum approximate optimization algorithm to the minimum vertex cover problem, Appl. Soft Comput., 118, Article 108554 pp., 2022
[149] Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P., Optimization by simulated annealing, Science, 220, 4598, 671-680, 1983, ISSN: 1095-9203 · Zbl 1225.90162
[150] Niu, Murphy Yuezhen; Lu, Sirui; Chuang, Isaac L., Optimizing QAOA: Success Probability and runtime dependence on circuit depth, 2019
[151] An, Dong; Lin, Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm, ACM Trans. Quantum Comput., 3, 2, 5:1-5:28, 2022
[152] Harrow, Aram W.; Hassidim, Avinatan; Lloyd, Seth, Quantum algorithm for linear systems of equations, Phys. Rev. Lett., 103, 15, Article 150502 pp., 2009, ISSN: 1079-7114
[153] Childs, Andrew M.; Kothari, Robin; Somma, Rolando D., Quantum algorithm for systems of linear equations with exponentially improved dependence on precision, SIAM J. Comput., 46, 6, 1920-1950, 2017 · Zbl 1383.68034
[154] Gilyén, András; Su, Yuan; Low, Guang Hao; Wiebe, Nathan, Quantum singular value transformation and beyond: Exponential improvements for quantum matrix arithmetics, (Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, 2019, ACM: ACM Phoenix AZ USA), 193-204 · Zbl 1433.68147
[155] Guerreschi, G. G.; Matsuura, A. Y., QAOA for max-cut requires hundreds of qubits for quantum speed-up, Sci. Rep., 9, 1, 6903, 2019
[156] Wang, Samson; Fontana, Enrico; Cerezo, M.; Sharma, Kunal; Sone, Akira; Cincio, Lukasz; Coles, Patrick J., Noise-induced barren plateaus in variational quantum algorithms, Nature Commun., 12, 1, 6961, 2021
[157] Sanders, Yuval R.; Berry, Dominic W.; Costa, Pedro C. S.; Tessler, Louis W.; Wiebe, Nathan; Gidney, Craig; Neven, Hartmut; Babbush, Ryan, Compilation of fault-tolerant quantum heuristics for combinatorial optimization, PRX Quantum, 1, 2, Article 020312 pp., 2020
[158] Babbush, Ryan; McClean, Jarrod R.; Newman, Michael; Gidney, Craig; Boixo, Sergio; Neven, Hartmut, Focus beyond quadratic speedups for error-corrected quantum advantage, PRX Quantum, 2, 1, Article 010103 pp., 2021
[159] McClean, Jarrod R.; Harrigan, Matthew P.; Mohseni, Masoud; Rubin, Nicholas C.; Jiang, Zhang; Boixo, Sergio; Smelyanskiy, Vadim N.; Babbush, Ryan; Neven, Hartmut, Low-depth mechanisms for quantum optimization, PRX Quantum, 2, 3, Article 030312 pp., 2021
[160] Larkin, Jason; Jonsson, Matías; Justice, Daniel; Guerreschi, Gian Giacomo, Evaluation of QAOA based on the approximation ratio of individual samples, Quantum Sci. Technol., 7, 4, Article 045014 pp., 2022
[161] Adrian Kuegel, Improved Exact Solver for the Weighted MAX-SAT Problem, in: POS-10. Pragmatics of SAT, pp. 15-1, http://dx.doi.org/10.29007/38lm.
[162] Dunning, Iain; Gupta, Swati; Silberholz, John, What works best when? a systematic evaluation of heuristics for max-cut and QUBO, INFORMS J. Comput., 2018 · Zbl 1528.90288
[163] Mbeng, Glen Bigan; Fazio, Rosario; Santoro, Giuseppe, Quantum annealing: A journey through digitalization, control, and hybrid quantum variational schemes, 2019
[164] Wurtz, Jonathan; Love, Peter, MaxCut quantum approximate optimization algorithm performance guarantees for p \(> 1\), Phys. Rev. A, 103, 4, Article 042612 pp., 2021, ISSN: 2469-9934
[165] Marwaha, Kunal, Local classical MAX-cut algorithm outperforms \(p=2\) QAOA on high-girth regular graphs, Quantum, 5, 437, 2021
[166] Barak, Boaz; Marwaha, Kunal, Classical algorithms and quantum limitations for maximum cut on high-girth graphs, (Braverman, Mark, 13th Innovations in Theoretical Computer Science Conference. 13th Innovations in Theoretical Computer Science Conference, ITCS 2022. 13th Innovations in Theoretical Computer Science Conference. 13th Innovations in Theoretical Computer Science Conference, ITCS 2022, Leibniz International Proceedings in Informatics (LIPIcs), vol. 215, 2022, Schloss Dagstuhl - Leibniz-Zentrum für Informatik: Schloss Dagstuhl - Leibniz-Zentrum für Informatik Dagstuhl, Germany), 14:1-14:21 · Zbl 1482.68012
[167] Basso, Joao; Farhi, Edward; Marwaha, Kunal; Villalonga, Benjamin; Zhou, Leo, The quantum approximate optimization algorithm at high depth for MaxCut on large-girth regular graphs and the sherrington-kirkpatrick model, (Le Gall, François; Morimae, Tomoyuki, 17th Conference on the Theory of Quantum Computation, Communication and Cryptography. 17th Conference on the Theory of Quantum Computation, Communication and Cryptography, TQC 2022. 17th Conference on the Theory of Quantum Computation, Communication and Cryptography. 17th Conference on the Theory of Quantum Computation, Communication and Cryptography, TQC 2022, Leibniz International Proceedings in Informatics (LIPIcs), vol. 232, 2022, Schloss Dagstuhl - Leibniz-Zentrum für Informatik: Schloss Dagstuhl - Leibniz-Zentrum für Informatik Dagstuhl, Germany), 7:1-7:21 · Zbl 07872958
[168] Hastings, Matthew B., A classical algorithm which also beats \(\smallsetminus\) frac{1}{2}+\( \smallsetminus\) frac{2}{\( \smallsetminus\) pi}\( \smallsetminus\) frac{1}{\( \smallsetminus\) sqrt{D}}\) for high girth MAX-cut, 2021
[169] Farhi, Edward; Gamarnik, David; Gutmann, Sam, The quantum approximate optimization algorithm needs to see the whole graph: Worst case examples, 2020
[170] Farhi, Edward; Goldstone, Jeffrey; Gutmann, Sam; Zhou, Leo, The quantum approximate optimization algorithm and the sherrington-kirkpatrick model at infinite size, Quantum, 6, 759, 2022
[171] Aizenman, M.; Lebowitz, J. L.; Ruelle, D., Some Rigorous results on the Sherrington-Kirkpatrick spin glass model, Comm. Math. Phys., 112, 1, 3-20, 1987 · Zbl 1108.82312
[172] Montanari, Andrea; Sen, Subhabrata, Semidefinite programs on sparse random graphs and their application to community detection, (Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing. Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’16, 2016, Association for Computing Machinery: Association for Computing Machinery New York, NY, USA), 814-827 · Zbl 1376.90043
[173] Bandeira, Afonso S.; Kunisky, Dmitriy; Wein, Alexander S., Computational hardness of certifying bounds on constrained PCA problems, (Vidick, Thomas, 11th Innovations in Theoretical Computer Science Conference. 11th Innovations in Theoretical Computer Science Conference, ITCS 2020. 11th Innovations in Theoretical Computer Science Conference. 11th Innovations in Theoretical Computer Science Conference, ITCS 2020, Leibniz International Proceedings in Informatics (LIPIcs), vol. 151, 2020, Schloss Dagstuhl- Leibniz-Zentrum fuer Informatik: Schloss Dagstuhl- Leibniz-Zentrum fuer Informatik Dagstuhl, Germany), 78:1-78:29 · Zbl 07650426
[174] Montanari, Andrea, Optimization of the Sherrington-Kirkpatrick Hamiltonian, SIAM J. Comput., FOCS19-1, 2021 · Zbl 1528.82043
[175] Alaoui, Ahmed El; Montanari, Andrea; Sellke, Mark, Optimization of mean-field spin glasses, Ann. Probab., 49, 6, 2922-2960, 2021, ISSN: 2168-894X · Zbl 07467487
[176] Lin, Cedric Yen-Yu; Zhu, Yechao, Performance of QAOA on typical instances of constraint satisfaction problems with bounded degree, 2016
[177] Marwaha, Kunal; Hadfield, Stuart, Bounds on approximating max \(k\) XOR with quantum and classical local algorithms, Quantum, 6, 757, 2022
[178] Farhi, Edward; Gamarnik, David; Gutmann, Sam, The quantum approximate optimization algorithm needs to see the whole graph: A Typical Case, 2020
[179] Chou, Chi-Ning; Love, Peter J.; Sandhu, Juspreet Singh; Shi, Jonathan, Limitations of local quantum algorithms on random max-k-XOR and beyond, 2022 · Zbl 07870251
[180] Basso, Joao; Gamarnik, David; Mei, Song; Zhou, Leo, Performance and limitations of the QAOA at constant levels on large sparse hypergraphs and spin glass models, (2022 IEEE 63rd Annual Symposium on Foundations of Computer Science. 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science, FOCS, 2022), 335-343
[181] Halperin, Eran; Livnat, Dror; Zwick, Uri, MAX cut in cubic graphs, J. Algorithms, 53, 2, 169-185, 2004 · Zbl 1089.68077
[182] Hirvonen, Juho; Rybicki, Joel; Schmid, Stefan; Suomela, Jukka, Large cuts with local algorithms on triangle-free graphs, Electron. J. Combin., P4.21, 2017 · Zbl 1373.05189
[183] Parisi, G., Infinite number of order parameters for spin-glasses, Phys. Rev. Lett., 43, 23, 1754-1756, 1979
[184] Gamarnik, David, The overlap gap property: A topological barrier to optimizing over random structures, Proc. Natl. Acad. Sci., 118, 41, Article e2108492118 pp., 2021
[185] Brandao, Fernando G. S.L.; Broughton, Michael; Farhi, Edward; Gutmann, Sam; Neven, Hartmut, For fixed control parameters the quantum approximate optimization algorithm’s objective function value concentrates for typical instances, 2018
[186] Dembo, Amir; Montanari, Andrea; Sen, Subhabrata, Extremal cuts of sparse random graphs, Ann. Probab., 45, 2, 1190-1217, 2017, ISSN: 2168-894X · Zbl 1372.05196
[187] Boulebnane, Sami; Montanaro, Ashley, Predicting parameters for the quantum approximate optimization algorithm for MAX-cut from the infinite-size limit, 2021, arXiv:2110.10685. [quant-ph]
[188] Barak, Boaz; Moitra, Ankur; O’Donnell, Ryan; Raghavendra, Prasad; Regev, Oded; Steurer, David; Trevisan, Luca; Vijayaraghavan, Aravindan; Witmer, David; Wright, John, Beating the random assignment on constraint satisfaction problems of bounded degree, 2015
[189] Wang, Qingfeng; Abdullah, Tauqir, An introduction to quantum optimization approximation algorithm, 16, 2018
[190] Gamarnik, David; Jagannath, Aukosh, The overlap gap property and approximate message passing algorithms for \(p\)-spin models, Ann. Probab., 49, 1, 2021 · Zbl 1470.60277
[191] Boulebnane, Sami; Montanaro, Ashley, Solving boolean satisfiability problems with the quantum approximate optimization algorithm, 2022
[192] Cai, Shaowei; Luo, Chuan; Su, Kaile, Improving WalkSAT by effective tie-breaking and efficient implementation, Comput. J., 58, 11, 2864-2875, 2015, ISSN: 1460-2067
[193] Freedman, Michael H.; Hastings, Matthew B., Quantum systems on non-k-hyperfinite complexes: A generalization of classical statistical mechanics on expander graphs, Quantum Info. Comput., 14, 1- 2, 144-180, 2014
[194] Gamarnik, David; Sudan, Madhu, Limits of local algorithms over sparse random graphs, Ann. Probab., 45, 4, 2353-2376, 2017 · Zbl 1371.05265
[195] Gamarnik, David; Sudan, Madhu, Performance of sequential local algorithms for the random NAE-\(k\)-SAT problem, SIAM J. Comput., 46, 2, 590-619, 2017 · Zbl 1388.60037
[196] Chen, Wei-Kuo; Gamarnik, David; Panchenko, Dmitry; Rahman, Mustazee, Suboptimality of local algorithms for a class of max-cut problems, Ann. Probab., 47, 3, 1587-1618, 2019, ISSN: 2168-894X · Zbl 1466.60200
[197] Chen, Yanzhu; Zhu, Linghua; Mayhall, Nicholas J.; Barnes, Edwin; Economou, Sophia E., How much entanglement do quantum optimization algorithms require?, (Quantum 2.0 Conference and Exhibition (2022) Paper. Quantum 2.0 Conference and Exhibition (2022) Paper, QM4A .2, 2022, Optica Publishing Group), QM4A.2
[198] Dupont, Maxime; Didier, Nicolas; Hodson, Mark J.; Moore, Joel E.; Reagor, Matthew J., Calibrating the classical hardness of the quantum approximate optimization algorithm, PRX Quantum, 3, 4, Article 040339 pp., 2022
[199] Sreedhar, Rishi; Vikstål, Pontus; Svensson, Marika; Ask, Andreas; Johansson, Göran; García-Álvarez, Laura, The quantum approximate optimization algorithm performance with low entanglement and high circuit depth, 2022
[200] Herrman, Rebekah; Treffert, Lorna; Ostrowski, James; Lotshaw, Phillip C.; Humble, Travis S.; Siopsis, George, Impact of graph structures for QAOA on MaxCut, Quantum Inf. Process., 20, 9, 289, 2021 · Zbl 1509.81272
[201] Lykov, Danylo; Wurtz, Jonathan; Poole, Cody; Saffman, Mark; Noel, Tom; Alexeev, Yuri, Sampling frequency thresholds for quantum advantage of quantum approximate optimization algorithm, 2022
[202] Moussa, Charles; Calandra, Henri; Dunjko, Vedran, To quantum or not to quantum: Towards algorithm selection in near-term quantum optimization, Quantum Sci. Technol., 5, 4, Article 044009 pp., 2020
[203] ORNL quantum computing institute / Qaoa-dataset-Version \(1 \cdot\) GitLab, 2021, GitLab, https://code.ornl.gov/qci/qaoa-dataset-version1
[204] Willsch, Madita; Willsch, Dennis; Jin, Fengping; De Raedt, Hans; Michielsen, Kristel, Benchmarking the quantum approximate optimization algorithm, Quantum Inf. Process., 19, 7, 197, 2020 · Zbl 1508.81554
[205] Bengtsson, Andreas, Improved success probability with greater circuit depth for the quantum approximate optimization algorithm, Phys. Rev. Appl., 14, 3, 2020
[206] Harrigan, Matthew P.; Sung, Kevin J.; Neeley, Matthew; Satzinger, Kevin J.; Arute, Frank; Arya, Kunal; Atalaya, Juan; Bardin, Joseph C.; Barends, Rami; Boixo, Sergio; Broughton, Michael; Buckley, Bob B.; Buell, David A.; Burkett, Brian; Bushnell, Nicholas; Chen, Yu; Chen, Zijun; Chiaro, Ben; Collins, Roberto; Courtney, William; Demura, Sean; Dunsworth, Andrew; Eppens, Daniel; Fowler, Austin; Foxen, Brooks; Gidney, Craig; Giustina, Marissa; Graff, Rob; Habegger, Steve; Ho, Alan; Hong, Sabrina; Huang, Trent; Ioffe, L. B.; Isakov, Sergei V.; Jeffrey, Evan; Jiang, Zhang; Jones, Cody; Kafri, Dvir; Kechedzhi, Kostyantyn; Kelly, Julian; Kim, Seon; Klimov, Paul V.; Korotkov, Alexander N.; Kostritsa, Fedor; Landhuis, David; Laptev, Pavel; Lindmark, Mike; Leib, Martin; Martin, Orion; Martinis, John M.; McClean, Jarrod R.; McEwen, Matt; Megrant, Anthony; Mi, Xiao; Mohseni, Masoud; Mruczkiewicz, Wojciech; Mutus, Josh; Naaman, Ofer; Neill, Charles; Neukart, Florian; Niu, Murphy Yuezhen; O’Brien, Thomas E.; O’Gorman, Bryan; Ostby, Eric; Petukhov, Andre; Putterman, Harald; Quintana, Chris; Roushan, Pedram; Rubin, Nicholas C.; Sank, Daniel; Skolik, Andrea; Smelyanskiy, Vadim; Strain, Doug; Streif, Michael; Szalay, Marco; Vainsencher, Amit; White, Theodore; Yao, Z. Jamie; Yeh, Ping; Zalcman, Adam; Zhou, Leo; Neven, Hartmut; Bacon, Dave; Lucero, Erik; Farhi, Edward; Babbush, Ryan, Quantum approximate optimization of non-planar graph problems on a planar superconducting processor, Nat. Phys., 17, 3, 332-336, 2021
[207] Alam, Mahabubul; Ash-Saki, Abdullah; Ghosh, Swaroop, Design-space exploration of quantum approximate optimization algorithm under noise, (2020 IEEE Custom Integrated Circuits Conference. 2020 IEEE Custom Integrated Circuits Conference, CICC, 2020), 1-4
[208] Pagano, G.; Bapat, A.; Becker, Pascal; Collins, K.; De, A.; Hess, P.; Kaplan, H.; Kyprianidis, A.; Tan, W. L.; Baldwin, C.; Brady, L.; Deshpande, A.; Liu, F.; Jordan, S.; Gorshkov, A.; Monroe, C., Quantum approximate optimization of the long-range Ising model with a trapped-ion quantum simulator, Proc. Natl. Acad. Sci., 117, 41, 25396-25401, 2020, ISSN: 1091-6490
[209] Qiang, Xiaogang; Zhou, Xiaoqi; Wang, Jianwei; Wilkes, Callum M.; Loke, Thomas; O’Gara, Sean; Kling, Laurent; Marshall, Graham D.; Santagati, Raffaele; Ralph, Timothy C.; Wang, Jingbo B.; O’Brien, Jeremy L.; Thompson, Mark G.; Matthews, Jonathan C. F., Large-scale silicon quantum photonics implementing arbitrary two-qubit processing, Nat. Photon, 12, 9, 534-539, 2018
[210] McClean, Jarrod R.; Kimchi-Schwartz, Mollie E.; Carter, Jonathan; de Jong, Wibe A., Hybrid quantum-classical hierarchy for mitigation of decoherence and determination of excited states, Phys. Rev. A, 95, 4, Article 042308 pp., 2017, ISSN: 2469-9934
[211] Gentini, Laura; Cuccoli, Alessandro; Pirandola, Stefano; Verrucchi, Paola; Banchi, Leonardo, Noise-resilient variational hybrid quantum-classical optimization, Phys. Rev. A, 102, 5, Article 052414 pp., 2020, ISSN: 2469-9934
[212] Sharma, Kunal; Khatri, Sumeet; Cerezo, M.; Coles, Patrick J., Noise resilience of variational quantum compiling, New J. Phys., 22, 4, Article 043006 pp., 2020
[213] Fontana, Enrico; Fitzpatrick, Nathan; Ramo, David Muñoz; Duncan, Ross; Rungger, Ivan, Evaluating the noise resilience of variational quantum algorithms, Phys. Rev. A, 104, 2, Article 022403 pp., 2021, ISSN: 2469-9934
[214] Mohanty, Nishikanta; Behera, Bikash K.; Ferrie, Christopher, Analysis of the vehicle routing problem sovled via hybrid quantum algorithms in presence of noisy channels, 2022
[215] Kungurtsev, Vyacheslav; Korpas, Georgios; Marecek, Jakub; Zhu, Elton Yechao, Iteration complexity of variational quantum algorithms, 2022
[216] Xue, Cheng; Chen, Zhao-Yun; Wu, Yu-Chun; Guo, Guo-Ping, Effects of quantum noise on quantum approximate optimization algorithm, Chin. Phys. Lett., 38, 3, Article 030302 pp., 2021, ISSN: 1741-3540
[217] Marshall, Jeffrey; Wudarski, Filip; Hadfield, Stuart; Hogg, Tad, Characterizing local noise in QAOA circuits, IOPSciNotes, 1, 2, Article 025208 pp., 2020
[218] Lotshaw, Phillip C.; Nguyen, Thien; Santana, Anthony; McCaskey, Alexander; Herrman, Rebekah; Ostrowski, James; Siopsis, George; Humble, Travis S., Scaling quantum approximate optimization on near-term hardware, Sci. Rep., 12, 1, 12388, 2022
[219] Liu, Xiaoyuan; Angone, Anthony; Shaydulin, Ruslan; Safro, Ilya; Alexeev, Yuri; Cincio, Lukasz, Layer VQE: A variational approach for combinatorial optimization on noisy quantum computers, IEEE Trans. Quantum Eng., 3, 1-20, 2022
[220] Campos, E.; Rabinovich, D.; Akshay, V.; Biamonte, J., Training saturation in layerwise quantum approximate optimization, Phys. Rev. A, 104, 3, L030401, 2021, ISSN: 2469-9934
[221] Heinz, Irina; Burkard, Guido, Crosstalk analysis for single-qubit and two-qubit gates in spin qubit arrays, Phys. Rev. B, 104, 4, Article 045420 pp., 2021, ISSN: 2469-9969
[222] Niu, Siyuan; Todri-Sanial, Aida, Analyzing crosstalk error in the NISQ era, (2021 IEEE Computer Society Annual Symposium on VLSI. 2021 IEEE Computer Society Annual Symposium on VLSI, ISVLSI, 2021), 428-430
[223] Burkard, Guido, Non-Markovian qubit dynamics in the presence of 1 / f noise, Phys. Rev. B, 79, 12, Article 125317 pp., 2009, ISSN: 1550-235X
[224] Schlör, Steffen; Lisenfeld, Jürgen; Müller, Clemens; Bilmes, Alexander; Schneider, Andre; Pappas, David P.; Ustinov, Alexey V.; Weides, Martin, Correlating decoherence in transmon qubits: Low frequency noise by single fluctuators, Phys. Rev. Lett., 123, 19, Article 190502 pp., 2019, ISSN: 1079-7114
[225] Maciejewski, Filip B.; Baccari, Flavio; Zimborás, Zoltán; Oszmaniec, Michał, Modeling and mitigation of cross-talk effects in readout noise with applications to the quantum approximate optimization algorithm, Quantum, 5, 464, 2021
[226] Quiroz, Gregory; Titum, Paraj; Lotshaw, Phillip; Lougovski, Pavel; Schultz, Kevin; Dumitrescu, Eugene; Hen, Itay, Quantifying the impact of precision errors on quantum approximate optimization algorithms, 2021
[227] Kattemölle, Joris; Burkard, Guido, Ability of error correlations to improve the performance of variational quantum algorithms, Phys. Rev. A, 107, Article 042426 pp., 2023
[228] Stilck França, Daniel; García-Patrón, Raul, Limitations of optimization algorithms on noisy quantum devices, Nat. Phys., 17, 11, 1221-1227, 2021, ISSN: 1745-2481
[229] Weidenfeller, Johannes; Valor, Lucia C.; Gacon, Julien; Tornow, Caroline; Bello, Luciano; Woerner, Stefan; Egger, Daniel J., Scaling of the quantum approximate optimization algorithm on superconducting qubit based hardware, Quantum, 6, 870, 2022
[230] Hashim, Akel; Rines, Rich; Omole, Victory; Naik, Ravi K.; Kreikebaum, John Mark; Santiago, David I.; Chong, Frederic T.; Siddiqi, Irfan; Gokhale, Pranav, Optimized SWAP networks with equivalent circuit averaging for QAOA, Phys. Rev. Res., 4, 3, Article 033028 pp., 2022
[231] De Palma, Giacomo; Marvian, Milad; Rouzé, Cambyse; França, Daniel Stilck, Limitations of variational quantum algorithms: A quantum optimal transport approach, PRX Quantum, 4, 1, Article 010309 pp., 2023
[232] González-García, Guillermo; Trivedi, Rahul; Cirac, J. Ignacio, Error propagation in NISQ devices for solving classical optimization problems, PRX Quantum, 3, 4, Article 040326 pp., 2022
[233] Shaydulin, Ruslan; Galda, Alexey, Error mitigation for deep quantum optimization circuits by leveraging problem symmetries, (2021 IEEE International Conference on Quantum Computing and Engineering. 2021 IEEE International Conference on Quantum Computing and Engineering, QCE, 2021), 291-300
[234] Alam, Mahabubul; Ash-Saki, Abdullah; Ghosh, Swaroop, Circuit compilation methodologies for quantum approximate optimization algorithm, (2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture. 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO, 2020), 215-228
[235] Alam, Mahabubul; Ash-Saki, Abdullah; Li, Junde; Chattopadhyay, Anupam; Ghosh, Swaroop, Noise resilient compilation policies for quantum approximate optimization algorithm, (2020 IEEE/ACM International Conference on Computer Aided Design. 2020 IEEE/ACM International Conference on Computer Aided Design, ICCAD, 2020), 1-7
[236] Alam, Mahabubul; Saki, Abdullah Ash; Ghosh, Swaroop, An efficient circuit compilation flow for quantum approximate optimization algorithm, (2020 57th ACM/IEEE Design Automation Conference. 2020 57th ACM/IEEE Design Automation Conference, DAC, 2020), 1-6
[237] Majumdar, Ritajit; Madan, Dhiraj; Bhoumik, Debasmita; Vinayagamurthy, Dhinakaran; Raghunathan, Shesha; Sur-Kolay, Susmita, Optimizing Ansatz design in QAOA for max-cut, 2021
[238] Majumdar, Ritajit; Bhoumik, Debasmita; Madan, Dhiraj; Vinayagamurthy, Dhinakaran; Raghunathan, Shesha; Sur-Kolay, Susmita, Depth optimized Ansatz circuit in QAOA for max-cut, 2021
[239] Bonet-Monroig, X.; Sagastizabal, R.; Singh, M.; O’Brien, T. E., Low-cost error mitigation by symmetry verification, Phys. Rev. A, 98, 6, Article 062339 pp., 2018, ISSN: 2469-9934
[240] McArdle, Sam; Yuan, Xiao; Benjamin, Simon, Error-mitigated digital quantum simulation, Phys. Rev. Lett., 122, 18, Article 180501 pp., 2019, ISSN: 1079-7114
[241] Botelho, Ludmila; Glos, Adam; Kundu, Akash; Miszczak, Jarosław Adam; Salehi, Özlem; Zimborás, Zoltán, Error mitigation for variational quantum algorithms through mid-circuit measurements, Phys. Rev. A, 105, 2, Article 022441 pp., 2022, ISSN: 2469-9934
[242] Streif, Michael; Leib, Martin; Wudarski, Filip; Rieffel, Eleanor; Wang, Zhihui, Quantum algorithms with local particle-number conservation: Noise effects and error correction, Phys. Rev. A, 103, 4, Article 042412 pp., 2021, ISSN: 2469-9934
[243] Weidinger, Anita; Mbeng, Glen Bigan; Lechner, Wolfgang, Error mitigation for quantum approximate optimization, 2023
[244] Dlaska, Clemens; Ender, Kilian; Mbeng, Glen Bigan; Kruckenhauser, Andreas; Lechner, Wolfgang; van Bijnen, Rick, Quantum optimization via Four-Body Rydberg Gates, Phys. Rev. Lett., 128, 12, Article 120503 pp., 2022, ISSN: 1079-7114
[245] Koczor, Bálint, Exponential error suppression for near-term quantum devices, Phys. Rev. X, 11, 3, Article 031057 pp., 2021
[246] Huggins, William J.; McArdle, Sam; O’Brien, Thomas E.; Lee, Joonho; Rubin, Nicholas C.; Boixo, Sergio; Whaley, K. Birgitta; Babbush, Ryan; McClean, Jarrod R., Virtual distillation for quantum error mitigation, Phys. Rev. X, 11, 4, Article 041036 pp., 2021
[247] Czarnik, Piotr; Arrasmith, Andrew; Cincio, Lukasz; Coles, Patrick J., Qubit-efficient exponential suppression of errors, 2021
[248] Dupont, Maxime; Evert, Bram; Hodson, Mark J.; Sundar, Bhuvanesh; Jeffrey, Stephen; Yamaguchi, Yuki; Feng, Dennis; Maciejewski, Filip B.; Hadfield, Stuart; Alam, M. Sohaib; Wang, Zhihui; Grabbe, Shon; Lott, P. Aaron; Rieffel, Eleanor G.; Venturelli, Davide; Reagor, Matthew J., Quantum enhanced greedy solver for optimization problems, 2023
[249] Leontica, Sebastian; Amaro, David, Exploring the neighborhood of 1-layer QAOA with instantaneous quantum polynomial circuits, 2023
[250] Pelofske, Elijah; Bärtschi, Andreas; Golden, John; Eidenbenz, Stephan, High-round QAOA for MAX \(k\)-SAT on trapped Ion NISQ devices, 2023
[251] Shaydulin, Ruslan; Pistoia, Marco, QAOA with \(n\smallsetminus cdot p\smallsetminus\) geq 200\), 2023
[252] Graham, T. M.; Song, Y.; Scott, J.; Poole, C.; Phuttitarn, L.; Jooya, K.; Eichler, P.; Jiang, X.; Marra, A.; Grinkemeyer, B.; Kwon, M.; Ebert, M.; Cherek, J.; Lichtman, M. T.; Gillette, M.; Gilbert, J.; Bowman, D.; Ballance, T.; Campbell, C.; Dahl, E. D.; Crawford, O.; Blunt, N. S.; Rogers, B.; Noel, T.; Saffman, M., Multi-qubit entanglement and algorithms on a neutral-atom quantum computer, Nature, 604, 7906, 457-462, 2022
[253] Pelofske, Elijah; Bärtschi, Andreas; Eidenbenz, Stephan, Quantum Annealing vs. QAOA: 127 Qubit Higher-Order Ising Problems on NISQ Computers, 240-258, 2023
[254] Niu, Siyuan; Todri-Sanial, Aida, Effects of dynamical decoupling and pulse-level optimizations on IBM quantum computers, IEEE Trans. Quantum Eng., 3, 1-10, 2022
[255] Alam, Mahabubul; Ash-Saki, Abdullah; Ghosh, Swaroop, Analysis of quantum approximate optimization algorithm under realistic noise in superconducting qubits, 2019
[256] Abrams, Deanna M.; Didier, Nicolas; Johnson, Blake R.; da Silva, Marcus P.; Ryan, Colm A., Implementation of XY entangling gates with a single calibrated pulse, Nat. Electron., 3, 12, 744-750, 2020
[257] Mundada, Pranav S.; Barbosa, Aaron; Maity, Smarak; Wang, Yulun; Stace, T. M.; Merkh, Thomas; Nielson, Felicity; Carvalho, Andre R. R.; Hush, Michael; Biercuk, Michael J.; Baum, Yuval, Experimental benchmarking of an automated deterministic error suppression workflow for quantum algorithms, 2023
[258] Lacroix, Nathan; Hellings, Christoph; Andersen, Christian Kraglund; Di Paolo, Agustin; Remm, Ants; Lazar, Stefania; Krinner, Sebastian; Norris, Graham J.; Gabureac, Mihai; Heinsoo, Johannes; Blais, Alexandre; Eichler, Christopher; Wallraff, Andreas, Improving the performance of deep quantum optimization algorithms with continuous gate sets, PRX Quantum, 1, 2, Article 110304 pp., 2020
[259] Deller, Yannick; Schmitt, Sebastian; Lewenstein, Maciej; Lenk, Steve; Federer, Marika; Jendrzejewski, Fred; Hauke, Philipp; Kasper, Valentin, Quantum approximate optimization algorithm for qudit systems with long-range interactions, 2022
[260] Vikstål, Pontus; García-Álvarez, Laura; Puri, Shruti; Ferrini, Giulia, Quantum approximate optimization algorithm with cat qubits, 2023
[261] Donkers, Huub; Mesman, Koen; Al-Ars, Zaid; Möller, Matthias, Qpack scores: Quantitative performance metrics for application-oriented quantum computer benchmarking, 2022
[262] Karalekas, Peter J.; Tezak, Nikolas A.; Peterson, Eric C.; Ryan, Colm A.; da Silva, Marcus P.; Smith, Robert S., A quantum-classical cloud platform optimized for variational hybrid algorithms, Quantum Sci. Technol., 5, 2, Article 024003 pp., 2020
[263] Truger, Felix; Barzen, Johanna; Bechtold, Marvin; Beisel, Martin; Leymann, Frank; Mandl, Alexander; Yussupov, Vladimir, Warm-starting and quantum computing: A systematic mapping study, 2023
[264] Maciejewski, Filip B.; Zimborás, Zoltán; Oszmaniec, Michał, Mitigation of readout noise in near-term quantum devices by classical xpost-processing based on detector tomography, Quantum, 4, 257, 2020
[265] Zhang, Hezi; Wu, Anbang; Wang, Yuke; Li, Gushu; Shapourian, Hassan; Shabani, Alireza; Ding, Yufei, A compilation framework for photonic one-way quantum computation, 2022
[266] Ji, Yanjun; Koenig, Kathrin F.; Polian, Ilia, Optimizing quantum algorithms on bipotent architectures, 2023
[267] Azad, Utkarsh; Behera, Bikash K.; Ahmed, Emad A.; Panigrahi, Prasanta K.; Farouk, Ahmed, Solving vehicle routing problem using quantum approximate optimization algorithm, IEEE Trans. Intell. Transp. Syst., 1-10, 2022
[268] Hegade, N. N.; Chandarana, P.; Paul, K.; Chen, Xi; Albarrán-Arriagada, F.; Solano, E., Portfolio optimization with digitized counterdiabatic quantum algorithms, Phys. Rev. Res., 4, 4, Article 043204 pp., 2022
[269] Lotshaw, Phillip C.; Xu, Hanjing; Khalid, Bilal; Buchs, Gilles; Humble, Travis S.; Banerjee, Arnab, Simulations of frustrated ising Hamiltonians using quantum approximate optimization, Phil. Trans. R. Soc. A., 381, 2241, Article 20210414 pp., 2023, ISSN: 1471-2962
[270] Brady, Lucas T.; Baldwin, Christopher L.; Bapat, Aniruddha; Kharkov, Yaroslav; Gorshkov, Alexey V., Optimal protocols in quantum annealing and quantum approximate optimization algorithm problems, Phys. Rev. Lett., 126, 7, Article 070505 pp., 2021, ISSN: 1079-7114
[271] Liang, Daniel; Li, Li; Leichenauer, Stefan, Investigating quantum approximate optimization algorithms under bang-bang protocols, Phys. Rev. Res., 2, 3, Article 033402 pp., 2020
[272] Cui, Jingjing; Xiong, Yifeng; Ng, Soon Xin; Hanzo, Lajos, Quantum approximate optimization algorithm based maximum likelihood detection, IEEE Trans. Commun., 70, 8, 5386-5400, 2022
[273] Chandarana, Pranav; Hegade, Narendra N.; Montalban, Iraitz; Solano, Enrique; Chen, Xi, Digitized-counterdiabatic quantum algorithm for protein folding, 2022
[274] Date, Prasanna; Arthur, Davis; Pusey-Nazzaro, Lauren, QUBO formulations for training machine learning models, Sci. Rep., 11, 1, 10029, 2021
[275] Killoran, Nathan; Bromley, Thomas R.; Arrazola, Juan Miguel; Schuld, Maria; Quesada, Nicolás; Lloyd, Seth, Continuous-variable quantum neural networks, Phys. Rev. Res., 1, 3, Article 033063 pp., 2019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.