×

Evanescent operators in one-loop matching computations. (English) Zbl 1541.81102

Summary: Effective Field Theory calculations used in countless phenomenological analyses employ dimensional regularization, and at intermediate stages of computations, the operator bases extend beyond the four-dimensional ones. The extra pieces – the evanescent operators – can ultimately be removed with a suitable renormalization scheme, resulting in a finite shift of the physical operators. Modern Effective Field Theory matching techniques relying on the method of expansion by regions have to be extended to account for this. After illustrating the importance of these shifts in two specific examples, we compute the finite shifts required to remove all evanescent operators appearing in the one-loop matching of generic ultraviolet theories to the Standard Model Effective Field Theory and elucidate the formalism for generic Effective Field Theory calculations.

MSC:

81T12 Effective quantum field theories
81T17 Renormalization group methods applied to problems in quantum field theory

References:

[1] LHCb collaboration, Experimental Review on Lepton Universality and Lepton Flavour Violation tests in B decays, EPJ Web Conf.234 (2020) 01004 [INSPIRE].
[2] Muon g-2 collaboration, Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm, Phys. Rev. Lett.126 (2021) 141801 [arXiv:2104.03281] [INSPIRE].
[3] W. Buchmuller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B268 (1986) 621 [INSPIRE].
[4] Grzadkowski, B.; Iskrzynski, M.; Misiak, M.; Rosiek, J., Dimension-Six Terms in the Standard Model Lagrangian, JHEP, 10, 085 (2010) · Zbl 1291.81452 · doi:10.1007/JHEP10(2010)085
[5] Jenkins, EE; Manohar, AV; Trott, M., Renormalization Group Evolution of the Standard Model Dimension Six Operators I: Formalism and lambda Dependence, JHEP, 10, 087 (2013) · Zbl 1342.81344 · doi:10.1007/JHEP10(2013)087
[6] Jenkins, EE; Manohar, AV; Trott, M., Renormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa Dependence, JHEP, 01, 035 (2014) · doi:10.1007/JHEP01(2014)035
[7] Alonso, R.; Jenkins, EE; Manohar, AV; Trott, M., Renormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology, JHEP, 04, 159 (2014) · doi:10.1007/JHEP04(2014)159
[8] Alonso, R.; Chang, H-M; Jenkins, EE; Manohar, AV; Shotwell, B., Renormalization group evolution of dimension-six baryon number violating operators, Phys. Lett. B, 734, 302 (2014) · doi:10.1016/j.physletb.2014.05.065
[9] Jenkins, EE; Manohar, AV; Stoffer, P., Low-Energy Effective Field Theory below the Electroweak Scale: Operators and Matching, JHEP, 03, 016 (2018) · Zbl 1388.81385 · doi:10.1007/JHEP03(2018)016
[10] W. Dekens and P. Stoffer, Low-energy effective field theory below the electroweak scale: matching at one loop, JHEP10 (2019) 197 [arXiv:1908.05295] [Erratum ibid.11 (2022) 148] [INSPIRE]. · Zbl 1427.81070
[11] Aebischer, J.; Crivellin, A.; Fael, M.; Greub, C., Matching of gauge invariant dimension-six operators for b → s and b → c transitions, JHEP, 05, 037 (2016) · doi:10.1007/JHEP05(2016)037
[12] Jenkins, EE; Manohar, AV; Stoffer, P., Low-Energy Effective Field Theory below the Electroweak Scale: Anomalous Dimensions, JHEP, 01, 084 (2018) · Zbl 1384.81078 · doi:10.1007/JHEP01(2018)084
[13] Celis, A.; Fuentes-Martín, J.; Vicente, A.; Virto, J., DsixTools: The Standard Model Effective Field Theory Toolkit, Eur. Phys. J. C, 77, 405 (2017) · doi:10.1140/epjc/s10052-017-4967-6
[14] Aebischer, J.; Kumar, J.; Straub, DM, Wilson: a Python package for the running and matching of Wilson coefficients above and below the electroweak scale, Eur. Phys. J. C, 78, 1026 (2018) · doi:10.1140/epjc/s10052-018-6492-7
[15] Fuentes-Martín, J.; Ruiz-Femenia, P.; Vicente, A.; Virto, J., DsixTools 2.0: The Effective Field Theory Toolkit, Eur. Phys. J. C, 81, 167 (2021) · doi:10.1140/epjc/s10052-020-08778-y
[16] Criado, JC, MatchingTools: a Python library for symbolic effective field theory calculations, Comput. Phys. Commun., 227, 42 (2018) · Zbl 1498.81006 · doi:10.1016/j.cpc.2018.02.016
[17] J. Aebischer, M. Fael, A. Lenz, M. Spannowsky and J. Virto eds., Computing Tools for the SMEFT, (2019) [arXiv:1910.11003] [INSPIRE].
[18] Gripaios, B.; Sutherland, D., DEFT: A program for operators in EFT, JHEP, 01, 128 (2019) · doi:10.1007/JHEP01(2019)128
[19] Criado, JC, BasisGen: automatic generation of operator bases, Eur. Phys. J. C, 79, 256 (2019) · doi:10.1140/epjc/s10052-019-6769-5
[20] Dedes, A.; Paraskevas, M.; Rosiek, J.; Suxho, K.; Trifyllis, L., SmeftFR — Feynman rules generator for the Standard Model Effective Field Theory, Comput. Phys. Commun., 247 (2020) · Zbl 07678447 · doi:10.1016/j.cpc.2019.106931
[21] Hartland, NP, A Monte Carlo global analysis of the Standard Model Effective Field Theory: the top quark sector, JHEP, 04, 100 (2019) · doi:10.1007/JHEP04(2019)100
[22] Aebischer, J.; Kumar, J.; Stangl, P.; Straub, DM, A Global Likelihood for Precision Constraints and Flavour Anomalies, Eur. Phys. J. C, 79, 509 (2019) · doi:10.1140/epjc/s10052-019-6977-z
[23] EOS Authors collaboration, EOS: a software for flavor physics phenomenology, Eur. Phys. J. C82 (2022) 569 [arXiv:2111.15428] [INSPIRE].
[24] D.M. Straub, flavio: a Python package for flavour and precision phenomenology in the Standard Model and beyond, arXiv:1810.08132 [INSPIRE].
[25] Brivio, I.; Jiang, Y.; Trott, M., The SMEFTsim package, theory and tools, JHEP, 12, 070 (2017) · doi:10.1007/JHEP12(2017)070
[26] Uhlrich, G.; Mahmoudi, F.; Arbey, A., MARTY — Modern ARtificial Theoretical phYsicist A C++ framework automating theoretical calculations Beyond the Standard Model, Comput. Phys. Commun., 264 (2021) · doi:10.1016/j.cpc.2021.107928
[27] S. Das Bakshi, J. Chakrabortty and S.K. Patra, CoDEx: Wilson coefficient calculator connecting SMEFT to UV theory, Eur. Phys. J. C79 (2019) 21 [arXiv:1808.04403] [INSPIRE].
[28] S. Di Noi and L. Silvestrini, RGESolver: a C++ library to perform Renormalization Group evolution in the Standard Model Effective Theory, arXiv:2210.06838 [INSPIRE].
[29] M.K. Gaillard, The Effective One Loop Lagrangian With Derivative Couplings, Nucl. Phys. B268 (1986) 669 [INSPIRE].
[30] L.-H. Chan, Derivative Expansion for the One Loop Effective Actions With Internal Symmetry, Phys. Rev. Lett.57 (1986) 1199 [INSPIRE].
[31] O. Cheyette, Effective Action for the Standard Model With Large Higgs Mass, Nucl. Phys. B297 (1988) 183 [INSPIRE].
[32] L.H. Chan, Effective action expansion in perturbation theory, Phys. Rev. Lett.54 (1985) 1222 [Erratum ibid.56 (1986) 404] [INSPIRE].
[33] C.M. Fraser, Calculation of Higher Derivative Terms in the One Loop Effective Lagrangian, Z. Phys. C28 (1985) 101 [INSPIRE].
[34] I.J.R. Aitchison and C.M. Fraser, Fermion Loop Contribution to Skyrmion Stability, Phys. Lett. B146 (1984) 63 [INSPIRE].
[35] I.J.R. Aitchison and C.M. Fraser, Derivative Expansions of Fermion Determinants: Anomaly Induced Vertices, Goldstone-Wilczek Currents and Skyrme Terms, Phys. Rev. D31 (1985) 2605 [INSPIRE].
[36] I.J.R. Aitchison and C.M. Fraser, Trouble With Boson Loops in Skyrmion Physics, Phys. Rev. D32 (1985) 2190 [INSPIRE].
[37] O. Cheyette, Derivative Expansion of the Effective Action, Phys. Rev. Lett.55 (1985) 2394 [INSPIRE].
[38] S. Dittmaier and C. Grosse-Knetter, Deriving nondecoupling effects of heavy fields from the path integral: A Heavy Higgs field in an SU(2) gauge theory, Phys. Rev. D52 (1995) 7276 [hep-ph/9501285] [INSPIRE].
[39] S. Dittmaier and C. Grosse-Knetter, Integrating out the standard Higgs field in the path integral, Nucl. Phys. B459 (1996) 497 [hep-ph/9505266] [INSPIRE]. · Zbl 1003.81573
[40] Henning, B.; Lu, X.; Murayama, H., How to use the Standard Model effective field theory, JHEP, 01, 023 (2016) · Zbl 1388.81246 · doi:10.1007/JHEP01(2016)023
[41] Drozd, A.; Ellis, J.; Quevillon, J.; You, T., The Universal One-Loop Effective Action, JHEP, 03, 180 (2016) · doi:10.1007/JHEP03(2016)180
[42] del Aguila, F.; Kunszt, Z.; Santiago, J., One-loop effective lagrangians after matching, Eur. Phys. J. C, 76, 244 (2016) · doi:10.1140/epjc/s10052-016-4081-1
[43] Boggia, M.; Gomez-Ambrosio, R.; Passarino, G., Low energy behaviour of standard model extensions, JHEP, 05, 162 (2016) · doi:10.1007/JHEP05(2016)162
[44] Henning, B.; Lu, X.; Murayama, H., One-loop Matching and Running with Covariant Derivative Expansion, JHEP, 01, 123 (2018) · Zbl 1384.81103 · doi:10.1007/JHEP01(2018)123
[45] Ellis, SAR; Quevillon, J.; You, T.; Zhang, Z., Mixed heavy-light matching in the Universal One-Loop Effective Action, Phys. Lett. B, 762, 166 (2016) · Zbl 1390.81281 · doi:10.1016/j.physletb.2016.09.016
[46] Fuentes-Martín, J.; Portoles, J.; Ruiz-Femenia, P., Integrating out heavy particles with functional methods: a simplified framework, JHEP, 09, 156 (2016) · Zbl 1390.81694 · doi:10.1007/JHEP09(2016)156
[47] Zhang, Z., Covariant diagrams for one-loop matching, JHEP, 05, 152 (2017) · Zbl 1380.81136 · doi:10.1007/JHEP05(2017)152
[48] Ellis, SAR; Quevillon, J.; You, T.; Zhang, Z., Extending the Universal One-Loop Effective Action: Heavy-Light Coefficients, JHEP, 08, 054 (2017) · doi:10.1007/JHEP08(2017)054
[49] Summ, B.; Voigt, A., Extending the Universal One-Loop Effective Action by Regularization Scheme Translating Operators, JHEP, 08, 026 (2018) · Zbl 1396.83040 · doi:10.1007/JHEP08(2018)026
[50] Cohen, T.; Freytsis, M.; Lu, X., Functional Methods for Heavy Quark Effective Theory, JHEP, 06, 164 (2020) · doi:10.1007/JHEP06(2020)164
[51] Cohen, T.; Lu, X.; Zhang, Z., Functional Prescription for EFT Matching, JHEP, 02, 228 (2021) · Zbl 1460.81054 · doi:10.1007/JHEP02(2021)228
[52] Krämer, M.; Summ, B.; Voigt, A., Completing the scalar and fermionic Universal One-Loop Effective Action, JHEP, 01, 079 (2020) · Zbl 1434.81128 · doi:10.1007/JHEP01(2020)079
[53] Angelescu, A.; Huang, P., Integrating Out New Fermions at One Loop, JHEP, 01, 049 (2021) · doi:10.1007/JHEP01(2021)049
[54] Ellis, SAR; Quevillon, J.; Vuong, PNH; You, T.; Zhang, Z., The Fermionic Universal One-Loop Effective Action, JHEP, 11, 078 (2020) · doi:10.1007/JHEP11(2020)078
[55] Dedes, A.; Mantzaropoulos, K., Universal scalar leptoquark action for matching, JHEP, 11, 166 (2021) · Zbl 1521.81156 · doi:10.1007/JHEP11(2021)166
[56] Cohen, T.; Lu, X.; Zhang, Z., STrEAMlining EFT Matching, SciPost Phys., 10, 098 (2021) · doi:10.21468/SciPostPhys.10.5.098
[57] Fuentes-Martín, J.; König, M.; Pagès, J.; Thomsen, AE; Wilsch, F., SuperTracer: A Calculator of Functional Supertraces for One-Loop EFT Matching, JHEP, 04, 281 (2021) · doi:10.1007/JHEP04(2021)281
[58] Carmona, A.; Lazopoulos, A.; Olgoso, P.; Santiago, J., Matchmakereft: automated tree-level and one-loop matching, SciPost Phys., 12, 198 (2022) · doi:10.21468/SciPostPhys.12.6.198
[59] J. Fuentes-Martín, M. König, J. Pagès, A.E. Thomsen and F. Wilsch, A Proof of Concept for Matchete: An Automated Tool for Matching Effective Theories, in preparation, https://gitlab.com/matchete/matchete.
[60] M.J. Dugan and B. Grinstein, On the vanishing of evanescent operators, Phys. Lett. B256 (1991) 239 [INSPIRE].
[61] A.J. Buras and P.H. Weisz, QCD Nonleading Corrections to Weak Decays in Dimensional Regularization and ’t Hooft-Veltman Schemes, Nucl. Phys. B333 (1990) 66 [INSPIRE].
[62] S. Herrlich and U. Nierste, Evanescent operators, scheme dependences and double insertions, Nucl. Phys. B455 (1995) 39 [hep-ph/9412375] [INSPIRE].
[63] J. Aebischer, A.J. Buras and J. Kumar, Simple Rules for Evanescent Operators in One-Loop Basis Transformations, Tech. Rep. AJB-22-1 (2022) [arXiv:2202.01225] [INSPIRE].
[64] Aebischer, J.; Pesut, M., One-loop Fierz transformations, JHEP, 10, 090 (2022) · Zbl 1534.81096 · doi:10.1007/JHEP10(2022)090
[65] J. Aebischer, M. Pesut and Z. Polonsky, Dipole operators in Fierz identities, arXiv:2211.01379 [INSPIRE]. · Zbl 1534.81096
[66] M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys. B522 (1998) 321 [hep-ph/9711391] [INSPIRE].
[67] Jantzen, B., Foundation and generalization of the expansion by regions, JHEP, 12, 076 (2011) · Zbl 1306.81420 · doi:10.1007/JHEP12(2011)076
[68] Einhorn, MB; Wudka, J., The Bases of Effective Field Theories, Nucl. Phys. B, 876, 556 (2013) · Zbl 1284.81325 · doi:10.1016/j.nuclphysb.2013.08.023
[69] V. Gherardi, D. Marzocca and E. Venturini, Matching scalar leptoquarks to the SMEFT at one loop, JHEP07 (2020) 225 [arXiv:2003.12525] [Erratum ibid.01 (2021) 006] [INSPIRE].
[70] Aebischer, J.; Dekens, W.; Jenkins, EE; Manohar, AV; Sengupta, D.; Stoffer, P., Effective field theory interpretation of lepton magnetic and electric dipole moments, JHEP, 07, 107 (2021) · doi:10.1007/JHEP07(2021)107
[71] de Blas, J.; Criado, JC; Perez-Victoria, M.; Santiago, J., Effective description of general extensions of the Standard Model: the complete tree-level dictionary, JHEP, 03, 109 (2018) · Zbl 1388.81377 · doi:10.1007/JHEP03(2018)109
[72] N. Tracas and N. Vlachos, Two Loop Calculations in QCD and the ∆I = 1/2 Rule in Nonleptonic Weak Decays, Phys. Lett. B115 (1982) 419 [INSPIRE].
[73] M. Fierz, Zur Fermischen Theorie des β-Zerfalls, Z. Phys.104 (1937) 553. · JFM 63.1400.05
[74] C.C. Nishi, Simple derivation of general Fierz-like identities, Am. J. Phys.73 (2005) 1160 [hep-ph/0412245] [INSPIRE].
[75] Chala, M.; Díaz-Carmona, A.; Guedes, G., A Green’s basis for the bosonic SMEFT to dimension 8, JHEP, 05, 138 (2022) · Zbl 1522.81199 · doi:10.1007/JHEP05(2022)138
[76] G. ’t Hooft and M.J.G. Veltman, Regularization and Renormalization of Gauge Fields, Nucl. Phys. B44 (1972) 189 [INSPIRE].
[77] P. Breitenlohner and D. Maison, Dimensional Renormalization and the Action Principle, Commun. Math. Phys.52 (1977) 11 [INSPIRE]. · Zbl 0597.53068
[78] Jegerlehner, F., Facts of life with γ_5, Eur. Phys. J. C, 18, 673 (2001) · Zbl 1099.81540 · doi:10.1007/s100520100573
[79] A.J. Buras, M. Misiak and J. Urban, Two loop QCD anomalous dimensions of flavor changing four quark operators within and beyond the standard model, Nucl. Phys. B586 (2000) 397 [hep-ph/0005183] [INSPIRE].
[80] Herren, F.; Thomsen, AE, On ambiguities and divergences in perturbative renormalization group functions, JHEP, 06, 116 (2021) · Zbl 1466.81066 · doi:10.1007/JHEP06(2021)116
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.