×

One-loop matching and running with covariant derivative expansion. (English) Zbl 1384.81103

Summary: We develop tools for performing effective field theory (EFT) calculations in a manifestly gauge-covariant fashion. We clarify how functional methods account for one-loop diagrams resulting from the exchange of both heavy and light fields, as some confusion has recently arisen in the literature. To efficiently evaluate functional traces containing these “mixed” one-loop terms, we develop a new covariant derivative expansion (CDE) technique that is capable of evaluating a much wider class of traces than previous methods. The technique is detailed in an appendix, so that it can be read independently from the rest of this work. We review the well-known matching procedure to one-loop order with functional methods. What we add to this story is showing how to isolate one-loop terms coming from diagrams involving only heavy propagators from diagrams with mixed heavy and light propagators. This is done using a non-local effective action, which physically connects to the notion of “integrating out” heavy fields. Lastly, we show how to use a CDE to do running analyses in EFTs, i.e. to obtain the anomalous dimension matrix. We demonstrate the methodologies by several explicit example calculations.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T17 Renormalization group methods applied to problems in quantum field theory

References:

[1] H. Georgi, On-shell effective field theory, Nucl. Phys.B 361 (1991) 339 [INSPIRE]. · doi:10.1016/0550-3213(91)90244-R
[2] H. Georgi, Thoughts on effective field theory, Nucl. Phys. Proc. Suppl.29BC (1992) 1 [INSPIRE].
[3] B. Henning, X. Lu and H. Murayama, How to use the Standard Model effective field theory, JHEP01 (2016) 023 [arXiv:1412.1837] [INSPIRE]. · Zbl 1388.81246 · doi:10.1007/JHEP01(2016)023
[4] M.K. Gaillard, The Effective One Loop Lagrangian With Derivative Couplings, Nucl. Phys.B 268 (1986) 669 [INSPIRE].
[5] O. Cheyette, Effective Action for the Standard Model With Large Higgs Mass, Nucl. Phys.B 297 (1988) 183 [INSPIRE]. · doi:10.1016/0550-3213(88)90205-2
[6] A. Drozd, J. Ellis, J. Quevillon and T. You, The Universal One-Loop Effective Action, JHEP03 (2016) 180 [arXiv:1512.03003] [INSPIRE]. · doi:10.1007/JHEP03(2016)180
[7] B. Henning, X. Lu and H. Murayama, What do precision Higgs measurements buy us?, arXiv:1404.1058 [INSPIRE].
[8] A. Drozd, J. Ellis, J. Quevillon and T. You, Comparing EFT and Exact One-Loop Analyses of Non-Degenerate Stops, JHEP06 (2015) 028 [arXiv:1504.02409] [INSPIRE]. · doi:10.1007/JHEP06(2015)028
[9] C.-W. Chiang and R. Huo, Standard Model Effective Field Theory: Integrating out a Generic Scalar, JHEP09 (2015) 152 [arXiv:1505.06334] [INSPIRE]. · doi:10.1007/JHEP09(2015)152
[10] R. Huo, Standard Model Effective Field Theory: Integrating out Vector-Like Fermions, JHEP09 (2015) 037 [arXiv:1506.00840] [INSPIRE]. · doi:10.1007/JHEP09(2015)037
[11] R. Huo, Effective Field Theory of Integrating out Sfermions in the MSSM: Complete One-Loop Analysis, arXiv:1509.05942 [INSPIRE].
[12] F. del Aguila, Z. Kunszt and J. Santiago, One-loop effective lagrangians after matching, Eur. Phys. J.C 76 (2016) 244 [arXiv:1602.00126] [INSPIRE].
[13] M. Boggia, R. Gomez-Ambrosio and G. Passarino, Low energy behaviour of standard model extensions, JHEP05 (2016) 162 [arXiv:1603.03660] [INSPIRE]. · doi:10.1007/JHEP05(2016)162
[14] S.A.R. Ellis, J. Quevillon, T. You and Z. Zhang, Mixed heavy-light matching in the Universal One-Loop Effective Action, Phys. Lett.B 762 (2016) 166 [arXiv:1604.02445] [INSPIRE]. · Zbl 1390.81281 · doi:10.1016/j.physletb.2016.09.016
[15] J. Fuentes-Martin, J. Portoles and P. Ruiz-Femenia, Integrating out heavy particles with functional methods: a simplified framework, JHEP09 (2016) 156 [arXiv:1607.02142] [INSPIRE]. · Zbl 1390.81694 · doi:10.1007/JHEP09(2016)156
[16] Z. Zhang, Covariant diagrams for one-loop matching, JHEP05 (2017) 152 [arXiv:1610.00710] [INSPIRE]. · Zbl 1380.81136 · doi:10.1007/JHEP05(2017)152
[17] S.A.R. Ellis, J. Quevillon, T. You and Z. Zhang, Extending the Universal One-Loop Effective Action: Heavy-Light Coefficients, JHEP08 (2017) 054 [arXiv:1706.07765] [INSPIRE]. · doi:10.1007/JHEP08(2017)054
[18] I. Brivio and M. Trott, The Standard Model as an Effective Field Theory, arXiv:1706.08945 [INSPIRE].
[19] C. Hartmann and M. Trott, On one-loop corrections in the standard model effective field theory; the Γ(h → γ γ) case, JHEP07 (2015) 151 [arXiv:1505.02646] [INSPIRE].
[20] R. Grober, M. Muhlleitner, M. Spira and J. Streicher, NLO QCD Corrections to Higgs Pair Production including Dimension-6 Operators, JHEP09 (2015) 092 [arXiv:1504.06577] [INSPIRE]. · Zbl 1388.81925 · doi:10.1007/JHEP09(2015)092
[21] M. Ghezzi, R. Gomez-Ambrosio, G. Passarino and S. Uccirati, NLO Higgs effective field theory and κ-framework, JHEP07 (2015) 175 [arXiv:1505.03706] [INSPIRE]. · Zbl 1388.81980 · doi:10.1007/JHEP07(2015)175
[22] C.-Y. Chen, S. Dawson and C. Zhang, Electroweak Effective Operators and Higgs Physics, Phys. Rev.D 89 (2014) 015016 [arXiv:1311.3107] [INSPIRE].
[23] B. Dumont, S. Fichet and G. von Gersdorff, A Bayesian view of the Higgs sector with higher dimensional operators, JHEP07 (2013) 065 [arXiv:1304.3369] [INSPIRE]. · Zbl 1342.81672 · doi:10.1007/JHEP07(2013)065
[24] C. Zhang, Effective field theory approach to top-quark decay at next-to-leading order in QCD, Phys. Rev.D 90 (2014) 014008 [arXiv:1404.1264] [INSPIRE].
[25] C. Zhang, Single Top Production at Next-to-Leading Order in the Standard Model Effective Field Theory, Phys. Rev. Lett.116 (2016) 162002 [arXiv:1601.06163] [INSPIRE].
[26] O. Bessidskaia Bylund, F. Maltoni, I. Tsinikos, E. Vryonidou and C. Zhang, Probing top quark neutral couplings in the Standard Model Effective Field Theory at NLO in QCD, JHEP05 (2016) 052 [arXiv:1601.08193] [INSPIRE]. · doi:10.1007/JHEP05(2016)052
[27] K. Mimasu, V. Sanz and C. Williams, Higher Order QCD predictions for Associated Higgs production with anomalous couplings to gauge bosons, JHEP08 (2016) 039 [arXiv:1512.02572] [INSPIRE]. · doi:10.1007/JHEP08(2016)039
[28] R. Gauld, B.D. Pecjak and D.J. Scott, One-loop corrections toh→bb¯\[ h\to b\overline{b}\] andh→ττ¯\[ h\to \tau \overline{\tau}\] decays in the Standard Model Dimension-6 EFT: four-fermion operators and the large-mtlimit, JHEP05 (2016) 080 [arXiv:1512.02508] [INSPIRE].
[29] E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators I: Formalism and lambda Dependence, JHEP10 (2013) 087 [arXiv:1308.2627] [INSPIRE]. · Zbl 1342.81344 · doi:10.1007/JHEP10(2013)087
[30] E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa Dependence, JHEP01 (2014) 035 [arXiv:1310.4838] [INSPIRE]. · doi:10.1007/JHEP01(2014)035
[31] R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology, JHEP04 (2014) 159 [arXiv:1312.2014] [INSPIRE]. · doi:10.1007/JHEP04(2014)159
[32] C. Grojean, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Scaling of Higgs Operators and Γ(h → γγ), JHEP04 (2013) 016 [arXiv:1301.2588] [INSPIRE]. · Zbl 1342.81342
[33] J. Elias-Miró, J.R. Espinosa, E. Masso and A. Pomarol, Renormalization of dimension-six operators relevant for the Higgs decays h → γγ, γZ, JHEP08 (2013) 033 [arXiv:1302.5661] [INSPIRE].
[34] J. Elias-Miró, J.R. Espinosa, E. Masso and A. Pomarol, Higgs windows to new physics through D = 6 operators: constraints and one-loop anomalous dimensions, JHEP11 (2013) 066 [arXiv:1308.1879] [INSPIRE].
[35] J. Elias-Miró, C. Grojean, R.S. Gupta and D. Marzocca, Scaling and tuning of EW and Higgs observables, JHEP05 (2014) 019 [arXiv:1312.2928] [INSPIRE]. · doi:10.1007/JHEP05(2014)019
[36] M.E. Peskin and D.V. Schroeder, An Introduction to quantum field theory, Addison-Wesley (1995), [INSPIRE].
[37] M.S. Bilenky and A. Santamaria, One loop effective Lagrangian for a standard model with a heavy charged scalar singlet, Nucl. Phys.B 420 (1994) 47 [hep-ph/9310302] [INSPIRE].
[38] E. Witten, Heavy Quark Contributions to Deep Inelastic Scattering, Nucl. Phys.B 104 (1976) 445 [INSPIRE].
[39] E. Witten, Short Distance Analysis of Weak Interactions, Nucl. Phys.B 122 (1977) 109 [INSPIRE].
[40] Z.U. Khandker, D. Li and W. Skiba, Electroweak Corrections from Triplet Scalars, Phys. Rev.D 86 (2012) 015006 [arXiv:1201.4383] [INSPIRE].
[41] W. Skiba, Effective Field Theory and Precision Electroweak Measurements, in Physics of the large and the small, TASI 09, proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics, Boulder, Colorado, U.S.A., 1-26 June 2009, (2011), pp. 5-70, [arXiv:1006.2142] [INSPIRE]. · Zbl 1242.81144
[42] H. Neufeld, J. Gasser and G. Ecker, The one loop functional as a Berezinian, Phys. Lett.B 438 (1998) 106 [hep-ph/9806436] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.