×

GKZ hypergeometric systems of the three-loop vacuum Feynman integrals. (English) Zbl 07701890

Summary: We present the Gel’fand-Kapranov-Zelevinsky (GKZ) hypergeometric systems of the Feynman integrals of the three-loop vacuum diagrams with arbitrary masses, basing on Mellin-Barnes representations and Miller’s transformation. The codimension of derived GKZ hypergeometric systems equals the number of independent dimensionless ratios among the virtual masses squared. Through GKZ hypergeometric systems, the analytical hypergeometric series solutions can be obtained in neighborhoods of origin including infinity. The linear independent hypergeometric series solutions whose convergent regions have non-empty intersection can constitute a fundamental solution system in a proper subset of the whole parameter space. The analytical expression of the vacuum integral can be formulated as a linear combination of the corresponding fundamental solution system in certain convergent region.

MSC:

81Q30 Feynman integrals and graphs; applications of algebraic topology and algebraic geometry
81T18 Feynman diagrams
33C20 Generalized hypergeometric series, \({}_pF_q\)
81V10 Electromagnetic interaction; quantum electrodynamics

References:

[1] L. Linssen et al., Physics and detectors at CLIC: CLIC conceptual design report, arXiv:1202.5940 [doi:10.5170/CERN-2012-003] [INSPIRE].
[2] T. Behnke et al., The International Linear Collider technical design report — volume 1: executive summary, arXiv:1306.6327 [INSPIRE].
[3] CEPC Study Group collaboration, CEPC conceptual design report: volume 2 — physics & detector, arXiv:1811.10545 [INSPIRE].
[4] FCC collaboration, FCC physics opportunities: Future Circular Collider conceptual design report volume 1, Eur. Phys. J. C79 (2019) 474 [INSPIRE].
[5] O. Aberle et al., High-Luminosity Large Hadron Collider (HL-LHC): technical design report, CERN-2020-010, CERN, Geneva, Switzerland (2020) [doi:10.23731/CYRM-2020-0010].
[6] Heinrich, G., Collider physics at the precision frontier, Phys. Rept., 922, 1 (2021) · Zbl 1509.81614 · doi:10.1016/j.physrep.2021.03.006
[7] G. ’t Hooft and M.J.G. Veltman, Scalar one loop integrals, Nucl. Phys. B153 (1979) 365 [INSPIRE].
[8] Passarino, G.; Veltman, MJG, One loop corrections for e^+e^−annihilation into μ^+μ^−in the Weinberg model, Nucl. Phys. B, 160, 151 (1979) · doi:10.1016/0550-3213(79)90234-7
[9] Denner, A., Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortsch. Phys., 41, 307 (1993)
[10] V.A. Smirnov, Analytic tools for Feynman integrals, Springer, Berlin, Heidelberg, Germany (2012) [INSPIRE]. · Zbl 1268.81004
[11] C. Ford, I. Jack and D.R.T. Jones, The standard model effective potential at two loops, Nucl. Phys. B387 (1992) 373 [Erratum ibid.504 (1997) 551] [hep-ph/0111190] [INSPIRE].
[12] Davydychev, AI; Tausk, JB, Two loop selfenergy diagrams with different masses and the momentum expansion, Nucl. Phys. B, 397, 123 (1993) · doi:10.1016/0550-3213(93)90338-P
[13] A.I. Davydychev, V.A. Smirnov and J.B. Tausk, Large momentum expansion of two loop selfenergy diagrams with arbitrary masses, Nucl. Phys. B410 (1993) 325 [hep-ph/9307371] [INSPIRE].
[14] Scharf, R.; Tausk, JB, Scalar two loop integrals for gauge boson selfenergy diagrams with a massless fermion loop, Nucl. Phys. B, 412, 523 (1994) · doi:10.1016/0550-3213(94)90391-3
[15] J.R. Espinosa and R.-J. Zhang, Complete two loop dominant corrections to the mass of the lightest CP even Higgs boson in the minimal supersymmetric standard model, Nucl. Phys. B586 (2000) 3 [hep-ph/0003246] [INSPIRE].
[16] D.J. Broadhurst, Three loop on-shell charge renormalization without integration:\( {\Lambda}_{QED}^{\overline{M}S}\) to four loops, Z. Phys. C54 (1992) 599 [INSPIRE].
[17] Laporta, S.; Remiddi, E., The analytical value of the electron light-light graphs contribution to the muon (g − 2) in QED, Phys. Lett. B, 301, 440 (1993) · doi:10.1016/0370-2693(93)91176-N
[18] L. Avdeev, J. Fleischer, S. Mikhailov and O. Tarasov, \(0( \alpha{\alpha}_s^2 )\) correction to the electroweak ρ parameter, Phys. Lett. B336 (1994) 560 [Erratum ibid.349 (1995) 597] [hep-ph/9406363] [INSPIRE].
[19] J. Fleischer and O.V. Tarasov, Application of conformal mapping and Padé approximants (ωP′s) to the calculation of various two-loop Feynman diagrams, Nucl. Phys. B Proc. Suppl.37 (1994) 115 [hep-ph/9407235] [INSPIRE].
[20] L.V. Avdeev, Recurrence relations for three loop prototypes of bubble diagrams with a mass, Comput. Phys. Commun.98 (1996) 15 [hep-ph/9512442] [INSPIRE].
[21] J. Fleischer and M.Y. Kalmykov, Single mass scale diagrams: construction of a basis for the ϵ-expansion, Phys. Lett. B470 (1999) 168 [hep-ph/9910223] [INSPIRE].
[22] Broadhurst, DJ, Massive three-loop Feynman diagrams reducible to SC* primitives of algebras of the sixth root of unity, Eur. Phys. J. C, 8, 311 (1999) · doi:10.1007/s100529900935
[23] K.G. Chetyrkin and M. Steinhauser, The relation between the MS-bar and the on-shell quark mass at order \({\alpha}_s^3 \), Nucl. Phys. B573 (2000) 617 [hep-ph/9911434] [INSPIRE].
[24] Davydychev, AI; Kalmykov, MY, Massive Feynman diagrams and inverse binomial sums, Nucl. Phys. B, 699, 3 (2004) · Zbl 1123.81388 · doi:10.1016/j.nuclphysb.2004.08.020
[25] Y. Schroder and A. Vuorinen, High-precision ϵ expansions of single-mass-scale four-loop vacuum bubbles, JHEP06 (2005) 051 [hep-ph/0503209] [INSPIRE].
[26] M.Y. Kalmykov, About higher order ϵ-expansion of some massive two- and three-loop master-integrals, Nucl. Phys. B718 (2005) 276 [hep-ph/0503070] [INSPIRE]. · Zbl 1207.81090
[27] Kalmykov, MY, Gauss hypergeometric function: reduction, ϵ-expansion for integer/half-integer parameters and Feynman diagrams, JHEP, 04, 056 (2006) · doi:10.1088/1126-6708/2006/04/056
[28] Bekavac, S.; Grozin, AG; Seidel, D.; Smirnov, VA, Three-loop on-shell Feynman integrals with two masses, Nucl. Phys. B, 819, 183 (2009) · Zbl 1194.81252 · doi:10.1016/j.nuclphysb.2009.04.015
[29] Bytev, VV; Kalmykov, MY; Kniehl, BA, Differential reduction of generalized hypergeometric functions from Feynman diagrams: one-variable case, Nucl. Phys. B, 836, 129 (2010) · Zbl 1206.81089 · doi:10.1016/j.nuclphysb.2010.03.025
[30] Grigo, J.; Hoff, J.; Marquard, P.; Steinhauser, M., Moments of heavy quark correlators with two masses: exact mass dependence to three loops, Nucl. Phys. B, 864, 580 (2012) · Zbl 1262.81200 · doi:10.1016/j.nuclphysb.2012.07.007
[31] Bytev, VV; Kalmykov, MY; Kniehl, BA, HYPERDIRE, HYPERgeometric functions DIfferential REduction: Mathematica-based packages for differential reduction of generalized hypergeometric functions_pF_p−1, F_1, F_2, F_3, F_4, Comput. Phys. Commun., 184, 2332 (2013) · Zbl 07866097 · doi:10.1016/j.cpc.2013.05.009
[32] Freitas, A., Three-loop vacuum integrals with arbitrary masses, JHEP, 11, 145 (2016) · Zbl 1390.81282 · doi:10.1007/JHEP11(2016)145
[33] S.P. Martin and D.G. Robertson, Evaluation of the general 3-loop vacuum Feynman integral, Phys. Rev. D95 (2017) 016008 [arXiv:1610.07720] [INSPIRE].
[34] S.P. Martin, Effective potential at three loops, Phys. Rev. D96 (2017) 096005 [arXiv:1709.02397] [INSPIRE].
[35] Liu, X.; Ma, Y-Q; Wang, C-Y, A systematic and efficient method to compute multi-loop master integrals, Phys. Lett. B, 779, 353 (2018) · doi:10.1016/j.physletb.2018.02.026
[36] X. Liu and Y.-Q. Ma, Determining arbitrary Feynman integrals by vacuum integrals, Phys. Rev. D99 (2019) 071501 [arXiv:1801.10523] [INSPIRE].
[37] Z.-F. Liu and Y.-Q. Ma, Determining Feynman integrals with only input from linear algebra, Phys. Rev. Lett.129 (2022) 222001 [arXiv:2201.11637] [INSPIRE].
[38] X. Liu and Y.-Q. Ma, AMFlow: a Mathematica package for Feynman integrals computation via auxiliary mass flow, Comput. Phys. Commun.283 (2023) 108565 [arXiv:2201.11669] [INSPIRE]. · Zbl 07693415
[39] T. Regge, Algebraic topology methods in the theory of Feynman relativistic amplitudes, in the proceedings of the Battelle rencontres, (1968), p. 433 [INSPIRE]. · Zbl 0174.28202
[40] E.E. Boos and A.I. Davydychev, A method for calculating vertex-type Feynman integrals, Vestn. Mosk. Univ. Fiz. Astron.28N3 (1987) 8.
[41] E.E. Boos and A.I. Davydychev, A method of evaluating massive Feynman integrals, Theor. Math. Phys.89 (1991) 1052 [INSPIRE].
[42] A.I. Davydychev, Some exact results for N point massive Feynman integrals, J. Math. Phys.32 (1991) 1052 [INSPIRE]. · Zbl 0729.58054
[43] A.I. Davydychev, Recursive algorithm of evaluating vertex type Feynman integrals, J. Phys. A25 (1992) 5587 [INSPIRE]. · Zbl 0767.65005
[44] Davydychev, AI, General results for massive N point Feynman diagrams with different masses, J. Math. Phys., 33, 358 (1992) · doi:10.1063/1.529914
[45] Usyukina, NI; Davydychev, AI, An approach to the evaluation of three and four point ladder diagrams, Phys. Lett. B, 298, 363 (1993) · doi:10.1016/0370-2693(93)91834-A
[46] Berends, FA; Böhm, M.; Buza, M.; Scharf, R., Closed expressions for specific massive multiloop self-energy integrals, Z. Phys. C, 63, 227 (1994) · doi:10.1007/BF01411014
[47] V.A. Smirnov, Analytical result for dimensionally regularized massless on shell double box, Phys. Lett. B460 (1999) 397 [hep-ph/9905323] [INSPIRE].
[48] J.B. Tausk, Nonplanar massless two loop Feynman diagrams with four on-shell legs, Phys. Lett. B469 (1999) 225 [hep-ph/9909506] [INSPIRE]. · Zbl 0987.81500
[49] A.I. Davydychev, Explicit results for all orders of the epsilon expansion of certain massive and massless diagrams, Phys. Rev. D61 (2000) 087701 [hep-ph/9910224] [INSPIRE].
[50] O.V. Tarasov, Application and explicit solution of recurrence relations with respect to space-time dimension, Nucl. Phys. B Proc. Suppl.89 (2000) 237 [hep-ph/0102271] [INSPIRE].
[51] J. Fleischer, F. Jegerlehner and O.V. Tarasov, A new hypergeometric representation of one loop scalar integrals in d dimensions, Nucl. Phys. B672 (2003) 303 [hep-ph/0307113] [INSPIRE]. · Zbl 1058.81605
[52] Davydychev, AI, Geometrical methods in loop calculations and the three-point function, Nucl. Instrum. Meth. A, 559, 293 (2006) · doi:10.1016/j.nima.2005.11.174
[53] Kalmykov, MY; Kniehl, BA, Towards all-order Laurent expansion of generalized hypergeometric functions around rational values of parameters, Nucl. Phys. B, 809, 365 (2009) · Zbl 1192.81351 · doi:10.1016/j.nuclphysb.2008.08.022
[54] Kalmykov, MY; Kniehl, BA, Counting master integrals: integration by parts versus differential reduction, Phys. Lett. B, 702, 268 (2011) · doi:10.1016/j.physletb.2011.06.094
[55] Bytev, VV; Kniehl, BA, HYPERDIRE HYPERgeometric functions DIfferential REduction: Mathematica-based packages for the differential reduction of generalized hypergeometric functions: Horn-type hypergeometric functions of two variables, Comput. Phys. Commun., 189, 128 (2015) · Zbl 1344.33006 · doi:10.1016/j.cpc.2014.11.022
[56] Bytev, VV; Kniehl, BA, HYPERDIRE-HYPERgeometric functions DIfferential REduction: Mathematica-based packages for the differential reduction of generalized hypergeometric functions: Lauricella function F_cof three variables, Comput. Phys. Commun., 206, 78 (2016) · Zbl 1375.33002 · doi:10.1016/j.cpc.2016.04.016
[57] Kalmykov, MY; Kniehl, BA, Counting the number of master integrals for sunrise diagrams via the Mellin-Barnes representation, JHEP, 07, 031 (2017) · Zbl 1380.81423 · doi:10.1007/JHEP07(2017)031
[58] Feng, T-F, Evaluating Feynman integrals by the hypergeometry, Nucl. Phys. B, 927, 516 (2018) · Zbl 1380.81131 · doi:10.1016/j.nuclphysb.2018.01.001
[59] Feng, T-F; Chang, C-H; Chen, J-B; Zhang, H-B, The system of partial differential equations for the C_0function, Nucl. Phys. B, 940, 130 (2019) · Zbl 1409.81047 · doi:10.1016/j.nuclphysb.2019.01.014
[60] Z.-H. Gu and H.-B. Zhang, Three-loop vacuum integral with four-propagators using hypergeometry, Chin. Phys. C43 (2019) 083102 [arXiv:1811.10429] [INSPIRE].
[61] Z.-H. Gu, H.-B. Zhang and T.-F. Feng, Hypergeometric expression for a three-loop vacuum integral, Int. J. Mod. Phys. A35 (2020) 2050089 [INSPIRE].
[62] Ananthanarayan, B.; Friot, S.; Ghosh, S., New series representations for the two-loop massive sunset diagram, Eur. Phys. J. C, 80, 606 (2020) · doi:10.1140/epjc/s10052-020-8131-3
[63] B. Ananthanarayan, S. Banik, S. Friot and S. Ghosh, Multiple series representations of N-fold Mellin-Barnes integrals, Phys. Rev. Lett.127 (2021) 151601 [arXiv:2012.15108] [INSPIRE].
[64] Kalmykov, MY; Kniehl, BA, Mellin-Barnes representations of Feynman diagrams, linear systems of differential equations, and polynomial solutions, Phys. Lett. B, 714, 103 (2012) · doi:10.1016/j.physletb.2012.06.045
[65] E. Nasrollahpoursamami, Periods of Feynman diagrams and GKZ D-modules, arXiv:1605.04970.
[66] I.M. Gel’fand, General theory of hypergeometric functions, Sov. Math. Dokl.33 (1986) 573. · Zbl 0645.33010
[67] I.M. Gel’fand, M.I. Graev and A.V. Zelevinsky, Holonomic systems of equations and series of hypergeometric type, Sov. Math. Dokl.36 (1988) 5.
[68] I.M. Gel’fand, A.V. Zelevinsky and M. M. Kapranov, Hypergeometric functions and toral manifold, Sov. Math. Dokl.37 (1988) 678.
[69] I.M. Gel’fand, M.M. Kapranov and A.V. Zelevinsky, Generalized Euler integrals and A-hypergeometric functions, Adv. Math.84 (1990) 255. · Zbl 0741.33011
[70] I.M. Gel’fand, A.V. Zelevinskii and M.M. Kapranov, Hypergeometric functions and toric varieties, Funct. Anal. Appl.23 (1989) 94. · Zbl 0721.33006
[71] de la Cruz, L., Feynman integrals as A-hypergeometric functions, JHEP, 12, 123 (2019) · Zbl 1431.81061 · doi:10.1007/JHEP12(2019)123
[72] Klausen, RP, Hypergeometric series representations of Feynman integrals by GKZ hypergeometric systems, JHEP, 04, 121 (2020) · Zbl 1436.81049 · doi:10.1007/JHEP04(2020)121
[73] Lee, RN; Pomeransky, AA, Critical points and number of master integrals, JHEP, 11, 165 (2013) · Zbl 1342.81139 · doi:10.1007/JHEP11(2013)165
[74] Oaku, T., Algorithms forb-functions, restrictions, and algebraic local cohomology groups of D-modules, Adv. Appl. Math., 19, 61 (1997) · Zbl 0938.32005 · doi:10.1006/aama.1997.0527
[75] Walther, U., Algorithmic computation of local cohomology modules and the local cohomological dimension of algebraic varieties, J. Pure Appl. Algebra, 139, 303 (1999) · Zbl 0960.14003 · doi:10.1016/S0022-4049(99)00016-X
[76] Oaku, T.; Takayama, N., Algorithms for D-modules — restriction, tensor product, localization, and local cohomology groups, J. Pure Appl. Algebra, 156, 267 (2001) · Zbl 0983.13008 · doi:10.1016/S0022-4049(00)00004-9
[77] T.-F. Feng, C.-H. Chang, J.-B. Chen and H.-B. Zhang, GKZ-hypergeometric systems for Feynman integrals, Nucl. Phys. B953 (2020) 114952 [arXiv:1912.01726] [INSPIRE]. · Zbl 1473.81066
[78] Feng, T-F; Zhang, H-B; Dong, Y-Q; Zhou, Y., GKZ-system of the 2-loop self energy with 4 propagators, Eur. Phys. J. C, 83, 314 (2023) · doi:10.1140/epjc/s10052-023-11438-6
[79] T.-F. Feng, H.-B. Zhang and C.-H. Chang, Feynman integrals of Grassmannians, Phys. Rev. D106 (2022) 116025 [arXiv:2206.04224] [INSPIRE].
[80] Miller, W. Jr, Lie theory and the hypergeometric functions, J. Math. Mech., 17, 1143 (1968) · Zbl 0159.09501
[81] Miller, W. Jr, Lie theory and generalized hypergeometric functions, SIAM J. Math. Anal., 3, 31 (1972) · Zbl 0235.33016 · doi:10.1137/0503004
[82] F. Loebbert, D. Müller and H. Münkler, Yangian bootstrap for conformal Feynman integrals, Phys. Rev. D101 (2020) 066006 [arXiv:1912.05561] [INSPIRE].
[83] Klemm, A.; Nega, C.; Safari, R., The l-loop banana amplitude from GKZ systems and relative Calabi-Yau periods, JHEP, 04, 088 (2020) · doi:10.1007/JHEP04(2020)088
[84] Bönisch, K., Analytic structure of all loop banana integrals, JHEP, 05, 066 (2021) · Zbl 1466.81022 · doi:10.1007/JHEP05(2021)066
[85] M. Hidding, DiffExp, a Mathematica package for computing Feynman integrals in terms of one-dimensional series expansions, Comput. Phys. Commun.269 (2021) 108125 [arXiv:2006.05510] [INSPIRE]. · Zbl 1518.65150
[86] M. Borinsky, Tropical Monte Carlo quadrature for Feynman integrals, arXiv:2008.12310 [doi:10.4171/AIHPD/158] [INSPIRE]. · Zbl 07755203
[87] M. Kalmykov et al., Hypergeometric functions and Feynman diagrams, in the proceedings of the Antidifferentiation and the calculation of Feynman amplitudes, (2020) [doi:10.1007/978-3-030-80219-6_9] [arXiv:2012.14492] [INSPIRE].
[88] Tellander, F.; Helmer, M., Cohen-Macaulay property of Feynman integrals, Commun. Math. Phys., 399, 1021 (2023) · Zbl 1535.81119 · doi:10.1007/s00220-022-04569-6
[89] Klausen, RP, Kinematic singularities of Feynman integrals and principal A-determinants, JHEP, 02, 004 (2022) · Zbl 1516.81091 · doi:10.1007/JHEP02(2022)004
[90] Mizera, S.; Telen, S., Landau discriminants, JHEP, 08, 200 (2022) · Zbl 1522.81096 · doi:10.1007/JHEP08(2022)200
[91] N. Arkani-Hamed, A. Hillman and S. Mizera, Feynman polytopes and the tropical geometry of UV and IR divergences, Phys. Rev. D105 (2022) 125013 [arXiv:2202.12296].
[92] Chestnov, V., Macaulay matrix for Feynman integrals: linear relations and intersection numbers, JHEP, 09, 187 (2022) · Zbl 1531.81092 · doi:10.1007/JHEP09(2022)187
[93] Walther, U., On Feynman graphs, matroids, and GKZ-systems, Lett. Math. Phys., 112, 120 (2022) · Zbl 1513.81067 · doi:10.1007/s11005-022-01614-2
[94] B. Ananthanarayan, S. Banik, S. Bera and S. Datta, FeynGKZ: a Mathematica package for solving Feynman integrals using GKZ hypergeometric systems, Comput. Phys. Commun.287 (2023) 108699 [arXiv:2211.01285] [INSPIRE]. · Zbl 1529.33002
[95] A.V. Smirnov, N.D. Shapurov and L.I. Vysotsky, FIESTA5: numerical high-performance Feynman integral evaluation, Comput. Phys. Commun.277 (2022) 108386 [arXiv:2110.11660] [INSPIRE]. · Zbl 1522.81097
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.