×

A POD-Galerkin reduced order model of a turbulent convective buoyant flow of Sodium over a backward-facing step. (English) Zbl 1479.76049

Summary: A Finite-Volume based POD-Galerkin reduced order modeling strategy for steady-state Reynolds averaged Navier-Stokes (RANS) simulation is extended for low-Prandtl number flow. The reduced order model is based on a full order model for which the effects of buoyancy on the flow and heat transfer are characterized by varying the Richardson number. The Reynolds stresses are computed with a linear eddy viscosity model. A single gradient diffusion hypothesis, together with a local correlation for the evaluation of the turbulent Prandtl number, is used to model the turbulent heat fluxes. The contribution of the eddy viscosity and turbulent thermal diffusivity fields are considered in the reduced order model with an interpolation based data-driven method. The reduced order model is tested for buoyancy-aided turbulent liquid sodium flow over a vertical backward-facing step with a uniform heat flux applied on the wall downstream of the step. The wall heat flux is incorporated with a Neumann boundary condition in both the full order model and the reduced order model. The velocity and temperature profiles predicted with the reduced order model for the same and new Richardson numbers inside the range of parameter values are in good agreement with the RANS simulations. Also, the local Stanton number and skin friction distribution at the heated wall are qualitatively well captured. Finally, the reduced order simulations, performed on a single core, are about \(10^5\) times faster than the RANS simulations that are performed on eight cores.

MSC:

76F35 Convective turbulence
76M12 Finite volume methods applied to problems in fluid mechanics
80A19 Diffusive and convective heat and mass transfer, heat flow

References:

[1] Taler, D., Heat transfer in turbulent tube flow of liquid metals, Proc. Eng., 157, 148-157 (2016)
[2] Niemann, M.; Fröhlich, J., Turbulence budgets in buoyancy-affected vertical backward-facing step flow at low Prandtl number, Flow, Turbul. Combust., 99, 3-4, 705-728 (2017)
[3] Roelofs, F.; Shams, A.; Otic, I.; Böttcher, M.; Duponcheel, M.; Bartosiewicz, Y.; Lakehal, D.; Baglietto, E.; Lardeau, S.; Cheng, X., Status and perspective of turbulence heat transfer modelling for the industrial application of liquid metal flows, Nucl. Eng. Des., 290, 99-106 (2015)
[4] Grötzbach, G., Challenges in low-Prandtl number heat transfer simulation and modelling, Nucl. Eng. Des., 264, 41-55 (2013)
[5] Cotton, M.; Jackson, J., Vertical tube air flows in the turbulent mixed convection regime calculated using a low-Reynolds-number k-ϵ model, Int. J. Heat Mass Transf., 33, 2, 275-286 (1990)
[6] Oder, J.; Shams, A.; Cizelj, L.; Tiselj, I., Direct numerical simulation of low-Prandtl fluid flow over a confined backward facing step, Int. J. Heat Mass Transf., 142, 118436 (2019)
[7] Schumm, T.; Frohnapfel, B.; Marocco, L., Numerical simulation of the turbulent convective buoyant flow of sodium over a backward-facing step, J. Phys.: Conf. Ser., 745, 032051 (2016)
[8] Schumm, T.; Frohnapfel, B.; Marocco, L., Investigation of a turbulent convective buoyant flow of sodium over a backward-facing step, Heat Mass Transf., 54, 8, 2533-2543 (2018)
[9] Ince, N.; Launder, B., On the computation of buoyancy-driven turbulent flows in rectangular enclosures, Int. J. Heat Fluid Flow, 10, 2, 110-117 (1989)
[10] Launder, B. E.; Sharma, B., Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc, Lett. Heat Mass Transf., 1, 2, 131-137 (1974)
[11] C. Yap, Turbulent heat and momentum transfer in recirculating and impinging flows (Ph. D. Thesis) (1987).
[12] Hsieh, K.; Lien, F., Numerical modeling of buoyancy-driven turbulent flows in enclosures, Int. J. Heat Fluid Flow, 25, 4, 659-670 (2004)
[13] Hanjalić, K.; Kenjereš, S.; Durst, F., Natural convection in partitioned two-dimensional enclosures at higher Rayleigh numbers, Int. J. Heat Mass Transf., 39, 7, 1407-1427 (1996) · Zbl 0963.76583
[14] Craft, T.; Ince, N.; Launder, B., Recent developments in second-moment closure for buoyancy-affected flows, Dyn. Atmosp. Oceans, 23, 1-4, 99-114 (1996)
[15] Dol, H.; Hanjalić, K.; Versteegh, T., A DNS-based thermal second-moment closure for buoyant convection at vertical walls, J. Fluid Mech., 391, 211-247 (1999) · Zbl 1004.76044
[16] Manceau, R.; Parneix, S.; Laurence, D., Turbulent heat transfer predictions using the v2-f model on unstructured meshes, Int. J. Heat Fluid Flow, 21, 3, 320-328 (2000)
[17] Kays, W. M., Turbulent Prandtl number-where are we?, J. Heat Transf., 116, 2, 284-295 (1994)
[18] Rozza, G.; Huynh, D. B.P.; Patera, A. T., Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations, Arch. Comput. Methods Eng., 15, 3, 1 (2008) · Zbl 1304.65251
[19] Veroy, K.; Prud’Homme, C.; Patera, A. T., Reduced-basis approximation of the viscous burgers equation: rigorous a posteriori error bounds, Comptes Rendus Math., 337, 9, 619-624 (2003) · Zbl 1036.65075
[20] Willcox, K.; Peraire, J., Balanced model reduction via the proper orthogonal decomposition, AIAA J., 40, 11, 2323-2330 (2002)
[21] Rowley, C. W., Model reduction for fluids, using balanced proper orthogonal decomposition, Int. J. Bifurc. Chaos, 15, 03, 997-1013 (2005) · Zbl 1140.76443
[22] Bui-Thanh, T.; Willcox, K.; Ghattas, O.; van Bloemen Waanders, B., Goal-oriented, model-constrained optimization for reduction of large-scale systems, J. Comput. Phys., 224, 2, 880-896 (2007) · Zbl 1123.65081
[23] Lumley, J. L., Coherent structures in turbulence, Transition and Turbulence, 215-242 (1981), Elsevier · Zbl 0486.76073
[24] Schmid, P. J., Dynamic mode decomposition of numerical and experimental data, J. Fluid Mech., 656, 5-28 (2010) · Zbl 1197.76091
[25] Kutz, J. N.; Brunton, S. L.; Brunton, B. W.; Proctor, J. L., Dynamic mode decomposition: data-driven modeling of complex systems (2016), SIAM · Zbl 1365.65009
[26] Tissot, G.; Cordier, L.; Benard, N.; Noack, B. R., Model reduction using dynamic mode decomposition, Comptes Rendus Mécanique, 342, 6-7, 410-416 (2014)
[27] Lorenzi, S.; Cammi, A.; Luzzi, L.; Rozza, G., POD-Galerkin method for finite volume approximation of Navier-Stokes and RANS equations, Comput. Methods Appl. Mech. Eng., 311, 151-179 (2016) · Zbl 1439.76112
[28] Hijazi, S.; Ali, S.; Stabile, G.; Ballarin, F.; Rozza, G., The effort of increasing Reynolds number in projection-based reduced order methods: from laminar to turbulent flows, Lect. Notes Comput. Sci. Eng., 132, 245-264 (2020)
[29] Hijazi, S.; Stabile, G.; Mola, A.; Rozza, G., Data-driven POD-Galerkin reduced order model for turbulent flows, J. Comput. Phys., 416, 109513 (2020) · Zbl 1437.76015
[30] Stabile, G.; Ballarin, F.; Zuccarino, G.; Rozza, G., A reduced order variational multiscale approach for turbulent flows, Adv. Comput. Math., 45, 2349-2368 (2019) · Zbl 1435.65165
[31] Borggaard, J.; Duggleby, A.; Hay, A.; Iliescu, T.; Wang, Z., Reduced-order modeling of turbulent flows, Proceedings of MTNS, 2008 (2008)
[32] Xie, X.; Wells, D.; Wang, Z.; Iliescu, T., Approximate deconvolution reduced order modeling, Comput. Methods Appl. Mech. Eng., 313, 512-534 (2017) · Zbl 1439.76038
[33] Girfoglio, M.; Quaini, A.; Rozza, G., A Finite Volume approximation of the Navier-Stokes equations with nonlinear filtering stabilization, Comput. Fluids, 187, 27-45 (2019) · Zbl 1474.76045
[34] Carlberg, K.; Farhat, C.; Cortial, J.; Amsallem, D., The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows, J. Comput. Phys., 242, 623-647 (2013) · Zbl 1299.76180
[35] Xiao, D.; Fang, F.; Du, J.; Pain, C.; Navon, I.; Buchan, A.; Elsheikh, A. H.; Hu, G., Non-linear Petrov-Galerkin methods for reduced order modelling of the Navier-Stokes equations using a mixed finite element pair, Comput. Methods Appl. Mech. Eng., 255, 147-157 (2013) · Zbl 1297.76107
[36] Georgaka, S.; Stabile, G.; Rozza, G.; Bluck, M. J., Parametric POD-Galerkin model order reduction for unsteady-state heat transfer problems, Commun. Comput. Phys., 27, 1, 1-32 (2018) · Zbl 1473.78016
[37] Georgaka, S.; Stabile, G.; Star, K.; Rozza, G.; Bluck, M. J., A hybrid reduced order method for modelling turbulent heat transfer problems, Comput. Fluids, 208, 104615 (2020) · Zbl 1502.65087
[38] Vergari, L.; Cammi, A.; Lorenzi, S., Reduced order modeling approach for parametrized thermal-hydraulics problems: inclusion of the energy equation in the POD-FV-ROM method, Progr. Nucl. Energy, 118, 103071 (2020)
[39] Star, S. K.; Stabile, G.; Georgaka, S.; Belloni, F.; Rozza, G.; Degroote, J., POD-Galerkin Reduced Order Model of the Boussinesq Approximation for Buoyancy-Driven Enclosed Flows, MC2019, 2452-2461 (2019), ANS: ANS Portland (OR), USA
[40] Rodi, W., Examples of turbulence models for incompressible flows, AIAA J., 20, 7, 872-879 (1982)
[41] Markatos, N. C.; Pericleous, K., Laminar and turbulent natural convection in an enclosed cavity, Int. J. Heat Mass Transf., 27, 5, 755-772 (1984) · Zbl 0542.76112
[42] Mallinson, G. D.; Norris, S. E., Fundamentals of Computational Fluid Dynamics, Math. Model. Food Process., 125-180 (2010)
[43] Rodi, W.; Scheuerer, G., Scrutinizing the k-ε turbulence model under adverse pressure gradient conditions, J. Fluids Eng., 108, 2, 174-179 (1986)
[44] Weigand, B.; Ferguson, J.; Crawford, M., An extended Kays and Crawford turbulent Prandtl number model, Int. J. Heat Mass Transf., 40, 17, 4191-4196 (1997)
[45] Garbrecht, O.; Kabelac, S.; Kneer, R., Large eddy simulation of three-dimensional mixed convection on a vertical plate, Technical Report (2017), Lehrstuhl für Wärme-und Stoffübertragung
[46] Geankoplis, C. J., Transport Processes and Separation Process Principles (Includes Unit Operations) (2003), Prentice Hall Professional Technical Reference
[47] Chinesta, F.; Ladeveze, P.; Cueto, E., A short review on model order reduction based on proper generalized decomposition, Arch. Comput. Methods Eng., 18, 4, 395 (2011)
[48] Hesthaven, J.; Rozza, G.; Stamm, B., Certified Reduced Basis Methods for Parametrized Partial Differential Equations (2016), Springer International Publishing · Zbl 1329.65203
[49] Quarteroni, A.; Manzoni, A.; Negri, F., Reduced Basis Methods for Partial Differential Equations: An Introduction, 92 (2015), Springer
[50] Caiazzo, A.; Iliescu, T.; John, V.; Schyschlowa, S., A numerical investigation of velocity-pressure reduced order models for incompressible flows, J. Comput. Phys., 259, 598-616 (2014) · Zbl 1349.76050
[51] Quarteroni, A.; Rozza, G., Reduced Order Methods for Modeling and Computational Reduction, 9 (2014), Berlin: Springer · Zbl 1280.65004
[52] Busto, S.; Stabile, G.; Rozza, G.; Vázquez-Cendón, M. E., POD-Galerkin reduced order methods for combined Navier-Stokes transport equations based on a hybrid FV-FE solver, Comput. Math. Appl., 79, 2, 256-273 (2020) · Zbl 1443.65196
[53] Stabile, G.; Rozza, G., Finite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible Navier-Stokes equations, Comput. Fluids, 173, 273-284 (2018) · Zbl 1410.76264
[54] Stabile, G.; Hijazi, S.; Mola, A.; Lorenzi, S.; Rozza, G., POD-Galerkin reduced order methods for CFD using Finite Volume Discretisation: vortex shedding around a circular cylinder, Commun. Appl. Ind. Math., 8, 1, 210-236 (2017) · Zbl 1383.35175
[55] Sirovich, L., Turbulence and the dynamics of coherent structures. I. coherent structures, Q. Appl. Math., 45, 3, 561-571 (1987) · Zbl 0676.76047
[56] Lazzaro, D.; Montefusco, L. B., Radial basis functions for the multivariate interpolation of large scattered data sets, J. Comput. Appl. Math., 140, 1-2, 521-536 (2002) · Zbl 1025.65015
[57] Walton, S.; Hassan, O.; Morgan, K., Reduced order modelling for unsteady fluid flow using proper orthogonal decomposition and radial basis functions, Appl. Math. Model., 37, 20-21, 8930-8945 (2013) · Zbl 1426.76576
[58] Jasak, H.; Jemcov, A.; Tuković, Ẑ., OpenFOAM: a C++ library for complex physics simulations (2007), Intl. workshop on coupled methods in numerical dynamics, Croatia
[59] Lassila, T.; Manzoni, A.; Quarteroni, A.; Rozza, G., Model order reduction in fluid dynamics: challenges and perspectives, Reduced Order Methods for Modeling and Computational Reduction, 9, 235-273 (2014), Springer International Publishing · Zbl 1395.76058
[60] Bizon, K.; Continillo, G., Reduced order modelling of chemical reactors with recycle by means of POD-penalty method, Comput. Chem. Eng., 39, 22-32 (2012)
[61] Graham, W.; Peraire, J.; Tang, K., Optimal control of vortex shedding using low-order models. part I - open-loop model development, Int. J. Numer. Methods Eng., 44, 7, 945-972 (1999) · Zbl 0955.76026
[62] J.L. Lions, E. Magenes, Non-homogenous boundary values problems and applications, Berlin: Springer, 1973. · Zbl 0251.35001
[63] Sirisup, S.; Karniadakis, G., Stability and accuracy of periodic flow solutions obtained by a POD-penalty method, Phys. D: Nonlinear Phenom., 202, 3-4, 218-237 (2005) · Zbl 1070.35024
[64] Epshteyn, Y.; Rivière, B., Estimation of penalty parameters for symmetric interior penalty Galerkin methods, J. Comput. Appl. Math., 206, 2, 843-872 (2007) · Zbl 1141.65078
[65] Kalashnikova, I.; Barone, M., Efficient non-linear proper orthogonal decomposition/Galerkin reduced order models with stable penalty enforcement of boundary conditions, Int. J. Numer. Methods Eng., 90, 11, 1337-1362 (2012) · Zbl 1242.76239
[66] Ferziger, J. H.; Perić, M., Computational Methods for Fluid Dynamics, 3 (2002), Springer · Zbl 0998.76001
[67] G. Stabile, G. Rozza, ITHACA-FV - In real Time Highly Advanced Computational Applications for Finite Volumes, (www.mathlab.sissa.it/ithaca-fv). Accessed 2020-01-29.
[68] Niemann, M.; Fröhlich, J., Buoyancy-affected backward-facing step flow with heat transfer at low prandtl number, Int. J. Heat Mass Transf., 101, 1237-1250 (2016)
[69] Hess, M. W.; Alla, A.; Quaini, A.; G. Rozza; Gunzburger, M., A localized reduced-order modeling approach for PDEs with bifurcating solutions, Comput. Methods Appl. Mech. Eng., 351, 379-403 (2019) · Zbl 1441.65082
[70] S.K. Star, G. Stabile, F. Belloni, G. Rozza, J. Degroote, Extension and comparison of techniques to enforce boundary conditions in Finite Volume POD-Galerkin reduced order models for fluid dynamic problems (2019).
[71] Baiges, J.; Codina, R.; Idelsohn, S. R., Reduced-order modelling strategies for the finite element approximation of the incompressible Navier-Stokes equations, Numerical Simulations of Coupled Problems in Engineering, 189-216 (2014), Springer
[72] Akhtar, I.; Nayfeh, A. H.; Ribbens, C. J., On the stability and extension of reduced-order Galerkin models in incompressible flows, Theoret. Comput. Fluid Dyn., 23, 3, 213-237 (2009) · Zbl 1234.76040
[73] Bergmann, M.; Bruneau, C.-H.; Iollo, A., Enablers for robust POD models, J. Comput. Phys., 228, 2, 516-538 (2009) · Zbl 1409.76099
[74] Fick, L.; Maday, Y.; Patera, A. T.; Taddei, T., A reduced basis technique for long-time unsteady turbulent flows, Book of Abstracts ENUMATH 2017, 70 (2017)
[75] Kunisch, K.; Volkwein, S., Optimal snapshot location for computing POD basis functions, ESAIM: Math. Model. Numer. Anal., 44, 3, 509-529 (2010) · Zbl 1193.65113
[76] Drikakis, D.; Hahn, M.; Mosedale, A.; Thornber, B., Large eddy simulation using high-resolution and high-order methods, Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci., 367, 1899, 2985-2997 (2009) · Zbl 1185.76719
[77] Grötzbach, G.; Wörner, M., Direct numerical and large eddy simulations in nuclear applications, Int. J. Heat Fluid Flow, 20, 3, 222-240 (1999)
[78] Simoneau, J.-p.; Champigny, J.; Gelineau, O., Applications of large eddy simulations in nuclear field, Nucl. Eng. Des., 240, 2, 429-439 (2010)
[79] Argyropoulos, C.; Markatos, N., Recent advances on the numerical modelling of turbulent flows, Appl. Math. Model., 39, 2, 693-732 (2015) · Zbl 1432.76117
[80] Wang, Z.; Akhtar, I.; Borggaard, J.; Iliescu, T., Proper orthogonal decomposition closure models for turbulent flows: a numerical comparison, Comput. Methods Appl. Mech. Eng., 237, 10-26 (2012) · Zbl 1253.76050
[81] Xie, X.; Mohebujjaman, M.; Rebholz, L. G.; Iliescu, T., Data-driven filtered reduced order modeling of fluid flows, SIAM J. Sci. Comput., 40, 3, B834-B857 (2018) · Zbl 1412.65158
[82] Östh, J.; Noack, B. R.; Krajnović, S.; Barros, D.; Borée, J., On the need for a nonlinear subscale turbulence term in POD models as exemplified for a high-Reynolds-number flow over an Ahmed body, J. Fluid Mech., 747, 518-544 (2014) · Zbl 1371.76085
[83] Markatos, N. C., Transient flow and heat transfer of liquid sodium coolant in the outlet plenum of a fast nuclear reactor, Int. J. Heat Mass Transf., 21, 12, 1565-1579 (1978) · Zbl 0441.76048
[84] Peherstorfer, B.; Willcox, K., Dynamic data-driven reduced-order models, Comput. Methods Appl. Mech. Eng., 291, 21-41 (2015) · Zbl 1425.65205
[85] Frank, M.; Drikakis, D.; Charissis, V., Machine-learning methods for computational science and engineering, Computation, 8, 1, 15 (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.