×

Application of 6-DOFs meshfree modeling to linear buckling analysis of stiffened plates with curvilinear surfaces. (English) Zbl 1430.74048

Summary: A buckling analysis of stiffened plates including curvilinear surfaces is carried out by an effective meshfree model. The buckling loads and modes computed by the present method are analyzed. Six degrees of freedom (6-DOFs) curved shell meshfree formulation in a convected coordinate system including a drilling rotation component is employed, which enables the assembly of curved shells for the modeling of more complex structures. By this formulation, the assembly of any arbitrary shape of geometry can be modeled in convected coordinates, while the 5-DOFs shell formulation suffers from the modeling of shell assemblies. Particularly, curved shells with straight stiffeners and plates with curvilinear stiffeners are considered. Furthermore, a twisted T-shaped structure where both web and flange have curvilinear geometry is analyzed. A meshfree discretization is employed, with which the reproducing kernel particle method is used as the meshfree interpolant. A boundary singular kernel method is adopted to precisely impose an essential boundary condition and to model folded shell geometries. The accuracy and effectiveness of the proposed method are demonstrated by several shell buckling problems for stiffened plate structures with curvilinear surfaces. The obtained meshfree results are compared with the linear and quadratic shell element results of finite element method ANSYS and discussed.

MSC:

74G60 Bifurcation and buckling
74S99 Numerical and other methods in solid mechanics
74K20 Plates

Software:

ANSYS; EBF3PanelOpt
Full Text: DOI

References:

[1] Mukhopadhyay, M., Mukherjee, A.: Finite element buckling analysis of stiffened plates. Comput. Struct. 34, 795-803 (1990) · Zbl 0709.73082 · doi:10.1016/0045-7949(90)90350-B
[2] Jiang, W., Bao, G., Robert, J.C.: Finite element modeling of stiffened and unstiffened orthotropic plates. Comput. Struct. 63, 105-117 (1997) · Zbl 0899.73515 · doi:10.1016/S0045-7949(96)00277-5
[3] Sadek, E.A., Tawfik, S.A.: A finite element model for the analysis of stiffened laminated plates. Comput. Struct. 75, 369-383 (2000) · doi:10.1016/S0045-7949(99)00094-2
[4] Prusty, B.G., Satsangi, S.K.: Analysis of stiffened shell for ships and ocean structures by finite element method. Ocean Eng. 28, 621-638 (2001) · doi:10.1016/S0029-8018(00)00021-4
[5] Fujikubo, M., Yao, T.: Elastic local buckling strength of stiffened plate considering plate/stiffener interaction and welding residual stress. Mar. Struct. 12, 543-564 (1999) · doi:10.1016/S0951-8339(99)00032-5
[6] Stamatelos, D.G., Labeas, G.N., Tserpes, K.I.: Analytical calculation of local buckling and post-buckling behavior of isotropic and orthotropic stiffened panels. Thin Walled Struct. 49, 422-430 (2011) · doi:10.1016/j.tws.2010.11.008
[7] Byklum, E., Steen, E., Amdahl, J.: A semi-analytical model for global buckling and postbuckling analysis of stiffened panels. Thin Walled Struct. 42, 701-717 (2004) · doi:10.1016/j.tws.2003.12.006
[8] Brubak, L., Hellesland, J., Steen, E.: Semi-analytical buckling strength analysis of plates with arbitrary stiffener arrangements. J. Constr. Steel Res. 63, 532-543 (2007) · doi:10.1016/j.jcsr.2006.06.002
[9] Brubak, L., Hellesland, J.: Semi-analytical postbuckling and strength analysis of arbitrarily stiffened plates in local and global bending. Thin Walled Struct. 45, 620-633 (2007) · doi:10.1016/j.tws.2007.04.011
[10] Fujikubo, M., Harada, M., Yao, T., Khedmati, M.R., Yanagihara, D.: Estimation of ultimate strength of continuous stiffened panel under combined transverse thrust and lateral pressure part 2: continuous stiffened panel. Mar. Struct. 18, 411-427 (2005) · doi:10.1016/j.marstruc.2006.01.001
[11] Paik, J.K., Seo, J.K.: Nonlinear finite element method models for ultimate strength analysis of steel stiffened-plate structures under combined biaxial compression and lateral pressure actions-part II: stiffened panels. Thin Walled Struct. 47, 998-1007 (2009) · doi:10.1016/j.tws.2008.08.006
[12] Tanaka, S., Yanagihara, D., Yasuoka, A., Harada, M., Okazawa, S., Fujikubo, M., Yao, T.: Evaluation of ultimate strength of stiffened panels under longitudinal thrust. Mar. Struct. 36, 21-50 (2014) · doi:10.1016/j.marstruc.2013.11.002
[13] Ozdemir, M., Ergin, A., Yanagihara, D., Tanaka, S., Yao, T.: A new method to estimate ultimate strength of stiffened panels under longitudinal thrust based on analytical formulas. Mar. Struct. 59, 510-535 (2018) · doi:10.1016/j.marstruc.2018.01.001
[14] Paik, J.K., Thayamballi, A.K., Kim, B.J.: Large deflection orthotropic plate approach to develop ultimate strength formulations for stiffened panels under combined biaxial compression/tension and lateral pressure. Thin Walled Struct. 39, 215-246 (2001) · doi:10.1016/S0263-8231(00)00059-8
[15] Paik, J.K., Lee, M.S.: A semi-analytical method for the elastic-plastic large deflection analysis of stiffened panels under combined biaxial compression/tension, biaxial in-plane bending, edge shear, and lateral pressure loads. Thin Walled Struct. 43, 375-410 (2005) · doi:10.1016/j.tws.2004.07.022
[16] Seo, J.K., Song, C.H., Park, J.S., Paik, J.K.: Nonlinear structural behaviour and design formulae for calculating the ultimate strength of stiffened curved plates under axial compression. Thin Walled Struct. 107, 1-17 (2016) · doi:10.1016/j.tws.2016.05.003
[17] Yao, T., Fujikubo, M.: Buckling and Ultimate Strength of Ship and Ship-Like Floating Structures. Butterworth-Heinemann, Oxford (2016)
[18] Kapania, R.K., Li, J., Kapoor, H.: Optimal design of unitized panels with curvilinear stiffeners. in: AIAA 5th Aviation, Technology, and Operations Conference (ATIO), vol. 3, pp. 1708-1737 (2005)
[19] Tamijani, A.Y., Kapania, R.K.: Buckling and static analysis of curvilinearly stiffened plates using mesh-free method. AIAA J. 48, 2739-2751 (2010) · doi:10.2514/1.43917
[20] Shi, P., Kapania, R.K., Dong, C.Y.: Vibration and buckling analysis of curvilinearly stiffened plates using finite element method. AIAA J. 53, 1319-1335 (2015) · doi:10.2514/1.J053358
[21] Zhao, W., Kapania, R.K.: Buckling analysis of unitized curvilinearly stiffened composite panels. Compos. Struct. 135, 365-382 (2016) · doi:10.1016/j.compstruct.2015.09.041
[22] Locatelli, D., Mulani, S.B., Kapania, R.K.: Wing-box weight optimization using curvilinear spars and ribs (SpaRibs). J. Aircr. 48, 1671-1684 (2011) · doi:10.2514/1.C031336
[23] Mulani, S.B., Slemp, W.C.H., Kapania, R.K.: EBF3PanelOpt: an optimization framework for curvilinear blade-stiffened panels. Thin Walled Struct. 63, 13-26 (2013) · doi:10.1016/j.tws.2012.09.008
[24] Qin, X.C., Dong, C.Y., Wang, F., Qu, X.Y.: Static and dynamic analyses of isogeometric curvilinearly stiffened plates. Appl. Math. Model. 45, 336-364 (2017) · Zbl 1446.74046 · doi:10.1016/j.apm.2016.12.035
[25] Qin, X.C., Dong, C.Y., Wang, F., Gong, Y.P.: Free vibration analysis of isogeometric curvilinearly stiffened shells. Thin Walled Struct. 116, 124-135 (2017) · doi:10.1016/j.tws.2017.03.019
[26] Leheta, H.W., Badran, S.F., Elhanafi, A.S.: Ship structural integrity using new stiffened plates. Thin Walled Struct. 94, 545-561 (2015) · doi:10.1016/j.tws.2015.05.018
[27] Liew, K.M., Wang, J., Ng, T.Y., Tan, M.J.: Free vibration and buckling analyses of shear-deformable plates based on FSDT meshfree method. J. Sound Vib. 276, 997-1017 (2004) · doi:10.1016/j.jsv.2003.08.026
[28] Liew, K.M., Chen, X.L., Reddy, J.N.: Mesh-free radial basis function method for buckling analysis of non-uniformly loaded arbitrarily shaped shear deformable plates. Comput. Methods Appl. Mech. Eng. 193, 205-224 (2004) · Zbl 1075.74700 · doi:10.1016/j.cma.2003.10.002
[29] Liew, K.M., Peng, L.X., Kitipornchai, S.: Buckling analysis of corrugated plates using a mesh-free Galerkin method based on first-order shear deformation theory. Comput. Mech. 38, 61-75 (2006) · Zbl 1138.74333 · doi:10.1007/s00466-005-0721-2
[30] Liew, K.M., Peng, L.X., Kitipornchai, S.: Buckling of folded plate structures subjected to partial in-plane edge loads by the FSDT meshfree Galerkin method. Int. J. Numer. Methods Eng. 65, 1495-1526 (2006) · Zbl 1115.74059 · doi:10.1002/nme.1505
[31] Bui, T.Q., Vo, D.Q., Zhang, C., Nguyen, D.D.: A consecutive-interpolation quadrilateral element (CQ4): formulation and applications. Finite Elem. Anal. Des. 84, 14-31 (2014) · doi:10.1016/j.finel.2014.02.004
[32] Kang, Z., Bui, T.Q., Nguyen, D.D., Saitoh, T., Hirose, S.: An extended consecutive-interpolation quadrilateral element (XCQ4) applied to linear elastic fracture mechanics. Acta Mech. 226, 3991-4015 (2015) · Zbl 1336.74010 · doi:10.1007/s00707-015-1451-y
[33] Tanaka, S., Suzuki, H., Sadamoto, S., Imachi, M., Bui, T.Q.: Analysis of cracked shear deformable plates by an effective meshfree plate formulation. Eng. Fract. Mech. 144, 142-157 (2015) · doi:10.1016/j.engfracmech.2015.06.084
[34] Tanaka, S., Suzuki, H., Sadamoto, S., Sannomaru, S., Yu, T.T., Bui, T.Q.: J-integral evaluation for 2D mixed-mode crack problems employing a meshfree stabilized conforming nodal integration method. Comput. Mech. 58, 185-198 (2016) · Zbl 1398.74476 · doi:10.1007/s00466-016-1288-9
[35] Tanaka, S., Suzuki, H., Sadamoto, S., Okazawa, S., Yu, T.T., Bui, T.Q.: Accurate evaluation of mixed-mode intensity factors of cracked shear-deformable plates by an enriched meshfree Galerkin formulation. Arch. Appl. Mech. 87, 279-298 (2017) · doi:10.1007/s00419-016-1193-x
[36] Sadamoto, S., Ozdemir, M., Tanaka, S., Taniguchi, K., Yu, T.T., Bui, T.Q.: An effective meshfree reproducing kernel method for buckling analysis of cylindrical shells with and without cutouts. Comput. Mech. 59, 919-932 (2017) · doi:10.1007/s00466-017-1384-5
[37] Yoshida, K., Sadamoto, S., Setoyama, Y., Tanaka, S., Bui, T.Q., Murakami, C., Yanagihara, D.: Meshfree flat-shell formulation for evaluating linear buckling loads and mode shapes of structural plates. J. Mar. Sci. Technol. 22, 501-512 (2017) · doi:10.1007/s00773-017-0433-2
[38] Sadamoto, S., Tanaka, S., Taniguchi, K., Ozdemir, M., Bui, T.Q., Murakami, C., Yanagihara, D.: Buckling analysis of stiffened plate structures by an improved meshfree flat shell formulation. Thin Walled Struct. 117, 303-313 (2017) · doi:10.1016/j.tws.2017.04.012
[39] Chen, J.S., Wang, D.: A constrained reproducing kernel particle formulation for shear deformable shell in Cartesian coordinates. Int. J. Numer. Methods Eng. 68, 151-172 (2006) · Zbl 1130.74055 · doi:10.1002/nme.1701
[40] Sadamoto, S., Yoshida, K., Tanaka, S.: Modeling of plate structures for Galerkin meshfree methods (2nd report: geometrical non-linear analysis). Trans. Jpn. Soc. Mech. Eng. 81, 1-12 (2015). (in Japanese)
[41] Sadamoto, S., Tanaka, S., Okazawa, S.: Elastic large deflection analysis of plates subjected to uniaxial thrust using meshfree Mindlin-Reissner formulation. Comput. Mech. 52, 1313-1330 (2013) · Zbl 1398.74475 · doi:10.1007/s00466-013-0878-z
[42] Chen, J.S., Wang, H.P.: New boundary condition treatments in meshfree computation of contact problems. Comput. Methods Appl. Mech. Eng. 187, 441-468 (2000) · Zbl 0980.74077 · doi:10.1016/S0045-7825(00)80004-3
[43] Wang, D., Chen, J.S.: A Hermite reproducing kernel approximation for thin-plate analysis with sub-domain stabilized conforming integration. Int. J. Numer. Methods Eng. 74, 368-390 (2008) · Zbl 1159.74460 · doi:10.1002/nme.2175
[44] Wang, D., Peng, H.: A Hermite reproducing kernel Galerkin meshfree approach for buckling analysis of thin plates. Comput. Mech. 51, 1013-1029 (2013) · Zbl 1366.74023 · doi:10.1007/s00466-012-0784-9
[45] Wang, D., Song, C., Peng, H.: A circumferentially enhanced Hermite reproducing kernel meshfree method for buckling analysis of Kirchhoff-Love cylindrical shells. Int. J. Struct. Stab. Dyn. 15, 1450090 (2015) · Zbl 1359.74446 · doi:10.1142/S0219455414500904
[46] Wang, D., Wu, J.: An efficient nesting sub-domain gradient smoothing integration algorithm with quadratic exactness for Galerkin meshfree methods. Comput. Methods Appl. Mech. Eng. 298, 485-519 (2016) · Zbl 1425.65182 · doi:10.1016/j.cma.2015.10.008
[47] Chen, J.S., Wu, C.T., Yoon, S., You, Y.: A stabilized conforming nodal integration for Galerkin mesh-free methods. Int. J. Numer. Methods Eng. 50, 435-466 (2001) · Zbl 1011.74081 · doi:10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
[48] Kanok-Nukulchai, W.: A simple and efficient finite element for general shell analysis. Int. J. Numer. Methods Eng. 14, 179-200 (1979) · Zbl 0394.73072 · doi:10.1002/nme.1620140204
[49] Noguchi, H., Kawashima, T., Miyamura, T.: Element free analyses of shell and spatial structures. Int. J. Numer. Methods Eng. 47, 1215-1240 (2000) · Zbl 0970.74079 · doi:10.1002/(SICI)1097-0207(20000228)47:6<1215::AID-NME834>3.0.CO;2-M
[50] ANSYS vers. 17.2: User’s guide (2016)
[51] Gerard, G., Becker, H.: Handbook of Structural Stability Part III: Buckling of Curved Plates and Shells. NACA TN, p. 3783. National Aeronautics and Space Administration, Washington (1957)
[52] Baiz, P.M., Aliabadi, M.H.: Linear buckling analysis of shear deformable shallow shells by the boundary domain element method. Comput. Model. Eng. Sci. 13, 19-34 (2006) · Zbl 1357.74034
[53] Chróścielewski, J., Witkowski, W.: Four-node semi-EAS element in six-field nonlinear theory of shells. Int. J. Numer. Methods Eng. 68, 1137-1179 (2006) · Zbl 1157.74037 · doi:10.1002/nme.1740
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.