×

A multilevel method for many-electron Schrödinger equations based on the atomic cluster expansion. (English) Zbl 1537.81219

Summary: The atomic cluster expansion (ACE) [R. Drautz, Phys. Rev. B (3) 99, No. 1, Article ID 014104, 15 p. (2029; doi:10.1103/PhysRevB.99.014104)] yields a highly efficient and interpretable parameterization of symmetric polynomials that has achieved great success in modelling properties of many-particle systems. In the present work we extend the practical applicability of the ACE framework to the computation of many-electron wave functions. To that end, we develop a customized variational Monte Carlo algorithm that exploits the sparsity and hierarchical properties of ACE wave functions. We demonstrate the feasibility on a range of proof-of-concept applications to one-dimensional systems.

MSC:

81V45 Atomic physics
81V70 Many-body theory; quantum Hall effect
78A35 Motion of charged particles
91G60 Numerical methods (including Monte Carlo methods)
35C20 Asymptotic expansions of solutions to PDEs
05D40 Probabilistic methods in extremal combinatorics, including polynomial methods (combinatorial Nullstellensatz, etc.)
34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
65C05 Monte Carlo methods
65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
81-08 Computational methods for problems pertaining to quantum theory

Software:

Julia; ITensor

References:

[1] Abrahamsen, N., Ding, Z., Goldshlager, G., and Lin, L., Convergence of Stochastic Gradient Descent on Parameterized Sphere with Applications to Variational Monte Carlo Simulation, https://arxiv.org/abs/2303.11602, 2023.
[2] Bachmayr, M., Dusson, G., and Ortner, C., Polynomial Approximation of Symmetric Functions, https://arxiv.org/abs/2109.14771, 2023. · Zbl 1531.65045
[3] Becca, F. and Sorella, S., Quantum Monte Carlo Approaches for Correlated Systems, Cambridge University Press, Cambridge, 2017. · Zbl 1420.81003
[4] Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B., Julia: A fresh approach to numerical computing, SIAM Rev., 59 (2017), pp. 65-98. · Zbl 1356.68030
[5] Bornemann, F. A. and Deuflhard, P., The cascadic multigrid method for elliptic problems, Numer. Math., 75 (1996), pp. 135-152. · Zbl 0873.65107
[6] Braess, D. and Dahmen, W., A cascadic multigrid algorithm for the Stokes equations, Numer. Math., 82 (1999), pp. 179-191. · Zbl 0929.65125
[7] Cauchy, A. L., Mémoire sur les fonctions qui ne peuvent obtenir que deux valeurs égales et de signes contraires par suite des transpositions opérées entre les variables quélles renferment, J. Éc. Polytechnique, 10 (1815), pp. 29-112.
[8] Choo, K., Mezzacapo, A., and Carleo, G., Fermionic neural-network states for ab-initio electronic structure, Nat. Commun., 11 (2020), 2368.
[9] Coe, J., França, V. V., and d’Amico, I., Feasibility of approximating spatial and local entanglement in long-range interacting systems using the extended Hubbard model, Europhys. Lett., 93 (2011), 10001.
[10] Cohen, A. J., Mori-Sánchez, P., and Yang, W., Challenges for density functional theory, Chem. Rev., 112 (2012), pp. 289-320.
[11] Deuflhard, P., Cascadic conjugate gradient methods for elliptic partial differential equations: Algorithm and numerical results, Contemp. Math., 180 (1994), pp. 29-29. · Zbl 0817.65090
[12] Drautz, R., Atomic cluster expansion for accurate and transferable interatomic potentials, Phys. Rev. B, 99 (2019), 014104.
[13] Drautz, R. and Ortner, C., Atomic Cluster Expansion and Wave Function Representations, https://arxiv.org/abs/2206.11375, 2022. · Zbl 07518052
[14] Dusson, G., Bachmayr, M., Csányi, G., Drautz, R., Etter, S., van der Oord, C., and Ortner, C., Atomic cluster expansion: Completeness, efficiency and stability, J. Comput. Phys., 454 (2022), 110946. · Zbl 07518052
[15] Eberly, J. H., Su, Q., and Javanainen, J., High-order harmonic production in multiphoton ionization, J. Opt. Soc. Amer. B, 6 (1989), pp. 1289-1298.
[16] Efron, B. and Stein, C., The jackknife estimate of variance, Ann. Statist., 9 (1981), pp. 586-596. · Zbl 0481.62035
[17] Eldad Haber, E. and Ruthotto, L., Stable architectures for deep neural networks, Inverse Problems, 34 (2018), 014004. · Zbl 1426.68236
[18] Feynman, R. and Cohen, M., Energy spectrum of the excitations in liquid helium, Phys. Rev., 102 (1956), 1189. · Zbl 0071.44702
[19] Fishman, M., White, S. R., and Stoudenmire, E. M., Codebase release 0.3 for ITensor, SciPost Phys. Codebases 4-r0.3, 2022.
[20] Fishman, M., White, S. R., and Stoudenmire, E. M., The ITensor software Library for tensor network calculations, SciPost Phys. Codebases 4, 2022.
[21] Foulkes, W., Mitas, L., Needs, R., and Rajagopal, G., Quantum Monte Carlo simulations of solids, Rev. Modern Phys., 73 (2001), pp. 33-83.
[22] Friesecke, G., Gerolin, A., and Gori-Giorgi, P., The Strong-Interaction Limit of Density Functional Theory, https://arxiv.org/abs/2202.09760, 2022.
[23] Giles, M. B., Multilevel Monte Carlo methods, Acta Numer., 24 (2015), pp. 259-328. · Zbl 1316.65010
[24] Giuseppe, C. and Matthias, T., Solving the quantum many-body problem with artificial neural networks, Science, 355 (2017), pp. 602-606. · Zbl 1404.81313
[25] Glielmo, A., Rath, Y., Csányi, G., De Vita, A., and Booth, G., Gaussian process states: A data-driven representation of quantum many-body physics, Phys. Rev. X, 10 (2020), 041026.
[26] Griebel, M. and Hamaekers, J., Sparse grids for the Schrödinger equation, ESAIM Math. Model. Numer. Anal., 41 (2007), pp. 215-247. · Zbl 1145.65096
[27] Griebel, M., Kuo, F. Y., and Sloan, I. H., The smoothing effect of the ANOVA decomposition, J. Complexity, 26 (2010), pp. 523-551. · Zbl 1205.65017
[28] Haber, E., Ruthotto, L., Holtham, E., and Jun, S.-H., Learning across scales—Multiscale methods for convolution neural networks, in Proceedings of the 32nd AAAI Conference on Artificial Intelligence, , 2018, pp. 3142-3148.
[29] Han, J., Zhang, L., and Weinan, E., Solving many-electron Schrödinger equation using deep neural networks, J. Comput. Phys., 399 (2019), 108929. · Zbl 1457.81010
[30] Helgaker, T., Jorgensen, P., and Olsen, J., Molecular Electronic-Structure Theory, John Wiley & Sons, New York, 2014.
[31] Hermann, J., Schätzle, Z., and Noé, F., Deep-neural-network solution of the electronic Schrödinger equation, Nat. Chem., 12 (2020), pp. 891-897.
[32] Huang, C.-J., Filippi, C., and Umrigar, C. J., Spin contamination in quantum Monte Carlo wave functions, J. Chem. Phys., 21 (1998), pp. 8838-8847.
[33] Huang, H., Landsberg, J., and Lu, J., Geometry of Backflow Transformation Ansatz for Quantum Many-Body Fermionic Wavefunctions, https://arxiv.org/abs/2111.10314, 2021. · Zbl 1524.81119
[34] Hutter, M., On Representing (Anti)symmetric Functions, https://arxiv.org/abs/2007.15298, 2020.
[35] Kaliuzhnyi, I. and Ortner, C., Optimal Evaluation of Symmetry-Adapted n-Correlations via Recursive Contraction of Sparse Symmetric Tensors, https://arxiv.org/abs/2202.04140, 2022.
[36] Khoromskaia, V., Khoromskij, B., and Schneider, R., QTT representation of the Hartree and exchange operators in electronic structure calculations, Comput. Methods Appl. Math., 11 (2011), pp. 327-341. · Zbl 1283.65038
[37] Kimmel, R., Elad, M., Shaked, D., Keshet, R., and Sobel, I., A variational framework for Retinex, Int. J. Comput. Vis., 52 (2003), pp. 7-23. · Zbl 1009.68642
[38] Li, T., Chen, F., Chen, H., and Wen, Z., Provable Convergence of Variational Monte Carlo Methods, https://arxiv.org/abs/2303.10599, 2023.
[39] Lin, J., Goldshlager, G., and Lin, L., Explicitly antisymmetrized neural network layers for variational Monte Carlo simulation, J. Comput. Phys., 474 (2023), 111765. · Zbl 07640534
[40] Loshchilov, I. and Hutter, F., Decoupled Weight Decay Regularization, https://arxiv.org/abs/1711.05101, 2019.
[41] Lysogorskiy, Y., van der Oord, C., Bochkarev, A., Menon, S., Rinaldi, M., Hammerschmidt, T., Mrovec, M., Thompson, A., Csányi, G., Ortner, C., and Drautz, R., Performant implementation of the atomic cluster expansion (PACE) and application to copper and silicon, npj Comput. Mater., 7 (2021), pp. 97-97.
[42] Martens, J. and Grosse, R., Optimizing neural networks with Kronecker-factored approximate curvature, in Proceedings of the 32nd International Conference on Machine Learning, , , 2015, pp. 2408-2417.
[43] Martin, R. M., Electronic Structure: Basic Theory and Practical Methods, Cambridge University Press, Cambridge, 2004. · Zbl 1152.74303
[44] Martin, R. M., Reining, L., and Ceperley, D. M., Interacting Electrons: Theory and Computational Approaches, Cambridge University Press, Cambridge, 2016.
[45] Motta, M., Ceperley, D. M., Kin-Lic Chan, G., Gomez, J. A., Gull, E., Guo, S., Jiménez-Hoyos, C. A., Nguyen Lan, T., Li, J., Ma, F., et al., Towards the solution of the many-electron problem in real materials: Equation of state of the hydrogen chain with state-of-the-art many-body methods, Phys. Rev. X, 7 (2017), 031059.
[46] Pfau, D., Spencer, J. S., Matthews, A. G., and Foulkes, W. M. C., Ab initio solution of the many-electron Schrödinger equation with deep neural networks, Phys. Rev. Res., 2 (2020), 033429.
[47] Scherbela, M., Reisenhofer, R., Gerard, L., Marquetand, P., and Philipp, G., Solving the electronic Schrödinger equation for multiple nuclear geometries with weight-sharing deep neural networks, Nat. Comput. Sci., 2 (2022), pp. 331-341.
[48] Shaidurov, V. V., Some estimates of the rate of convergence for the cascadic conjugate-gradient method, Comput. Math. Appl., 31 (1996), pp. 161-171. · Zbl 0886.65107
[49] Smolyak, S. A., Quadrature and interpolation formulas for tensor products of certain classes of functions, Dokl. Akad. Nauk, 148 (1963), pp. 1042-1045. · Zbl 0202.39901
[50] Snyder, J. C., Rupp, M., Hansen, K., Blooston, L., Müller, K.-R., and Burke, K., Orbital-free bond breaking via machine learning, J. Chem. Phys., 139 (2013).
[51] Sorella, S., Green function Monte Carlo with stochastic reconfiguration, Phys. Rev. Lett., 80 (1998), pp. 4558-4561.
[52] Sorella, S., Generalized Lanczos algorithm for variational quantum Monte Carlo, Phys. Rev. B, 64 (2001), 024512.
[53] Stoudenmire, E. M., Wagner, L. O., White, S. R., and Burke, K., One-dimensional continuum electronic structure with the density-matrix renormalization group and its implications for density-functional theory, Phys. Rev. Lett., 109 (2012), 056402.
[54] Thiele, M., Gross, E., and Kümmel, S., Adiabatic approximation in nonperturbative time-dependent density-functional theory, Phys. Rev. Lett., 100 (2008), 153004.
[55] Thomas, J., Chen, H., and Ortner, C., Body-ordered approximations of atomic properties, Arch. Ration. Mech. Anal., 246 (2022), pp. 1-60. · Zbl 1519.81507
[56] Toulouse, J. and Umrigar, C. J., Optimization of quantum Monte Carlo wave functions by energy minimization, J. Chem. Phys., 126 (2007), 084102.
[57] van der Oord, C., Dusson, G., Csányi, G., and Ortner, C., Regularised atomic body-ordered permutation-invariant polynomials for the construction of interatomic potentials, Mach. Learn. Sci. Tech., 1 (2020), 015004.
[58] Wagner, L. O., Stoudenmire, E., Burke, K., and White, S. R., Reference electronic structure calculations in one dimension, Phys. Chem. Chem. Phys., 14 (2012), pp. 8581-8590.
[59] Wu, D., Rossi, R., Vicentini, F., Astrakhantsev, N., Becca, F., Cao, X., Carrasquilla, J., Ferrari, F., Georges, A., Hibat-Allah, M., Imada, M., et al., Variational Benchmarks for Quantum Many-Body Problems, https://arxiv.org/abs/2302.04919, 2023.
[60] Zhou, D., Chen, H., Ho, C. H., and Ortner, C., ACESchrodinger.jl, (the package is private at the moment and available upon request).
[61] Zhou, D., Chen, H., Ho, C. H., and Ortner, C., A Multilevel Method for Many-Electron Schrödinger Equations Based on the Atomic Cluster Expansion, https://arxiv.org/abs/2304.04260, 2023.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.