×

Quantum phase transition of a quantum mixed spin chain by employing density matrix renormalization group method. (English) Zbl 07767831

Summary: The fidelity susceptibility and trace distance in the valence-bond-solid (VBS) transition of a quantum mixed spin chain is investigated, which consists of unit cells arrayed as 1/2-1/2-1-1 with alternating Heisenberg antiferromagnetic exchange couplings, by using the density matrix renormalization group (DMRG) method in the matrix product state (MPS) form. It is observed that the fidelity susceptibility and the first derivative of the trace distance display explicit divergence near the quantum critical point. The information about the quantum criticality, such as the quantum critical point and correlation length critical exponent, is extracted from the finite size scaling behaviors. The obtained quantum critical point is more accurate than previous work, and the existence of the scaling function of the trace distance near the critical point is observed numerically for the first time. In addition, it is also found that the trace distance between two sites can supplement the VBS picture for describing the change of the ground state as the control parameter is varied through the quantum critical point.
© 2021 Wiley-VCH GmbH

MSC:

81-XX Quantum theory

Software:

ITensor
Full Text: DOI

References:

[1] S.Sachdev, Quantum Phase Transitions, 2nd ed., Cambridge University Press, Cambridge, UK2011. · Zbl 1233.82003
[2] S.‐J.Gu, Int. J. Mod. Phys. B2010, 24, 4371.
[3] H. T.Quan, Z.Song, X. F.Liu, P.Zanardi, C. P.Sun, Phys. Rev. Lett.2006, 96, 140604.
[4] P.Zanardi, N.Paunković, Phys. Rev. E2006, 74, 031123.
[5] A.Osterloh, L.Amico, G.Falci, R.Fazio, Nature2002, 416, 608.
[6] T. J.Osborne, M. A.Nielsen, Phys. Rev. A2002, 66, 032110.
[7] G.Vidal, J. I.Latorre, E.Rico, A.Kitaev, Phys. Rev. Lett.2003, 90, 227902.
[8] L.Amico, R.Fazio, A.Osterloh, V.Vedral, Rev. Mod. Phys.2008, 80, 517. · Zbl 1205.81009
[9] G.Karpat, B.Çakmak, F. F.Fanchini, Phys. Rev. B2014, 90, 104431.
[10] Y.‐C.Li, H.‐Q.Lin, Sci. Rep.2016, 6, 26365.
[11] Y. C.Li, J.Zhang, H.‐Q.Lin, Phys. Rev. B2020, 101, 115142.
[12] D.‐W.Luo, J.‐B.Xu, Phys. Rev. A2013, 87, 013801.
[13] D.‐W.Luo, J.‐B.Xu, Ann. Phys.2015, 354, 298.
[14] E.Lieb, D.Mattis, J. Math. Phys.1962, 3, 749. · Zbl 0101.45302
[15] F. D. M.Haldane, Phys. Rev. Lett.1983, 50, 1153.
[16] K.Takano, Phys. Rev. Lett.1999, 82, 5124.
[17] K.Takano, Phys. Rev. B2000, 61, 8863.
[18] W. M.daSilva, R. R.Montenegro‐Filho, Phys. Rev. B2017, 96, 214419.
[19] J.Streǎcka, T.Verkholyak, J. Low. Temp. Phys.2017, 187, 712.
[20] R. R.Montenegro‐Filho, F. S.Matias, M. D.Coutinho‐Filho, Phys. Rev. B2020, 102, 035137.
[21] L. M.Veríssimo, M. S. S.Pereira, J.Strečka, M. L.Lyra, Phys. Rev. B2019, 99, 134408.
[22] F.Souza, L. M.Veríssimo, J.Strečka, M. L.Lyra, M. S. S.Pereira, Phys. Rev. B2020, 102, 064414.
[23] K.Karl’ová, J.Strečka, T.Verkholyak, Phys. Rev. B2019, 100, 094405.
[24] H.Wang, L.‐F.Zhang, Z.‐H.Ni, W.‐F.Zhong, L.‐J.Tian, J.Jiang, Cryst. Growth Des.2010, 10, 4231.
[25] H.Yamaguchi, T.Okita, Y.Iwasaki, Y.Kono, N.Uemoto, Y.Hosokoshi, T.Kida, T.Kawakami, A.Matsuo, M.Hagiwara, Sci. Rep.2020, 10, 9193.
[26] H.Yamaguchi, Y.Iwasaki, Y.Kono, T.Okita, A.Matsuo, M.Akaki, M.Hagiwara, Y.Hosokoshi, Phys. Rev. B2020, 102, 060408.
[27] S. R.White, Phys. Rev. Lett.1992, 69, 2863.
[28] S. R.White, Phys. Rev. B1993, 48, 10345.
[29] U.Schollwöck, Ann. Phys.2011, 326, 96. · Zbl 1213.81178
[30] R.Orús, Ann. Phys.2014, 349, 117. · Zbl 1343.81003
[31] T.Tonegawa, T.Hikihara, M.Kaburagi, T.Nishino, S.Miyashita, H.‐J.Mikeska, J. Phys. Soc. Jpn.1998, 67, 1000.
[32] W.‐L.You, Y.‐W.Li, S.‐J.Gu, Phys. Rev. E2007, 76, 022101.
[33] I.Affleck, T.Kennedy, E. H.Lieb, H.Tasaki, Phys. Rev. Lett.1987, 59, 799.
[34] Z.Xu, J.Dai, H.Ying, B.Zheng, Phys. Rev. B2003, 67, 214426.
[35] S.‐B.Li, Z.‐X.Xu, J.‐H.Dai, J.‐B.Xu, Phys. Rev. B2006, 73, 184411.
[36] T.Masuda, B.Chakoumakos, C.Nygren, S.Imai, K.Uchinokura, J. Solid State Chem.2003, 176, 175.
[37] E.Lieb, T.Schultz, D.Mattis, Ann. Phys.1961, 16, 407. · Zbl 0129.46401
[38] J.Eisert, M.Cramer, M. B.Plenio, Rev. Mod. Phys.2010, 82, 277. · Zbl 1205.81035
[39] F.Verstraete, J. I.Cirac, Phys. Rev. B2006, 73, 094423.
[40] M.Fishman, S. R.White, E. M.Stoudenmire, The ITensor Software Library for Tensor Network Calculations, arXiv:2007.14822, 2020.
[41] S.Chen, L.Wang, Y.Hao, Y.Wang, Phys. Rev. A2008, 77, 032111.
[42] S.‐J.Gu, H.‐M.Kwok, W.‐Q.Ning, H.‐Q.Lin, Phys. Rev. B2008, 77, 245109.
[43] A. F.Albuquerque, F.Alet, C.Sire, S.Capponi, Phys. Rev. B2010, 81, 064418.
[44] S.‐J.Gu, W. C.Yu, EPL2014, 108, 20002.
[45] G.Sun, B.‐B.Wei, S.‐P.Kou, Phys. Rev. B2019, 100, 064427.
[46] B.‐B.Wei, Phys. Rev. A2019, 99, 042117.
[47] M. A.Nielsen, I. L.Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition, Cambridge University Press, Cambridge, UK2010. · Zbl 1288.81001
[48] A.Smirne, H.‐P.Breuer, J.Piilo, B.Vacchini, Phys. Rev. A2010, 82, 062114.
[49] M.Cramer, M. B.Plenio, S. T.Flammia, R.Somma, D.Gross, S. D.Bartlett, O.Landon‐Cardinal, D.Poulin, Y.‐K.Liu, Nat. Commun.2010, 1, 149.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.