×

Calculating composite-particle Spectra in Hamiltonian formalism and demonstration in 2-flavor \(\mathrm{QED}_{1+1\mathrm{d}}\). (English) Zbl 07795946

Summary: We consider three distinct methods to compute the mass spectrum of gauge theories in the Hamiltonian formalism: (1) correlation-function scheme, (2) one-point-function scheme, and (3) dispersion-relation scheme. The first one examines spatial correlation functions as we do in the conventional Euclidean Monte Carlo simulations. The second one uses the boundary effect to efficiently compute the mass spectrum. The third one constructs the excited states and fits their energy using the dispersion relation with selecting quantum numbers. Each method has its pros and cons, and we clarify such properties in their applications to the mass spectrum for the 2-flavor massive Schwinger model at \(m/g = 0.1\) and \(\theta = 0\) using the density-matrix renormalization group (DMRG). We note that the multi-flavor Schwinger model at small mass \(m\) is a strongly coupled field theory even after the bosonizations, and thus it deserves to perform the first-principles numerical calculations. All these methods mostly agree and identify the stable particles, pions \(\pi_a\) (\(J^{PG} = 1^{-+}\)), sigma meson \(\sigma\) (\(J^{PG} = 0^{++}\)), and eta meson \(\eta\) (\(J^{PG} = 0^{--}\)). In particular, we find that the mass of \(\sigma\) meson is lighter than twice the pion mass, and thus \(\sigma\) is stable against the decay process, \(\sigma\rightarrow\pi\pi\). This is consistent with the analytic prediction using the WKB approximation, and, remarkably, our numerical results are so close to the WKB-based formula between the pion and sigma-meson masses, \(M_\sigma/M_\pi = \sqrt{3}\).

MSC:

81-XX Quantum theory

Software:

ITensor

References:

[1] Flavour Lattice Averaging Group (FLAG) collaboration, FLAG review 2021, Eur. Phys. J. C82 (2022) 869 [arXiv:2111.09849] [INSPIRE].
[2] Borsanyi, S., Full result for the QCD equation of state with 2 + 1 flavors, Phys. Lett. B, 730, 99 (2014) · doi:10.1016/j.physletb.2014.01.007
[3] HotQCD collaboration, Equation of state in (2 + 1)-flavor QCD, Phys. Rev. D90 (2014) 094503 [arXiv:1407.6387] [INSPIRE].
[4] N. Shibata, K. Ueda, T. Nishino and C. Ishii, Friedel oscillations in the one-dimensional Kondo lattice model, Phys. Rev. B54 (1996) 13495.
[5] N. Shibata, K. Ueda, T. Nishino and C. Ishii, Large Fermi surface of the one-dimensional Kondo lattice model observed by Friedel oscillations, Physica B230-232 (1997) 1024.
[6] B. Pirvu, J. Haegeman and F. Verstraete, Matrix product state based algorithm for determining dispersion relations of quantum spin chains with periodic boundary conditions, Phys. Rev. B85 (2012) 035130.
[7] Haegeman, J., Variational matrix product ansatz for dispersion relations, Phys. Rev. B, 85 (2012) · doi:10.1103/PhysRevB.85.100408
[8] J. Haegeman, S. Michalakis, B. Nachtergaele, T.J. Osborne, N. Schuch and F. Verstraete, Elementary excitations in gapped quantum spin systems, Phys. Rev. Lett.111 (2013) 080401.
[9] J.S. Schwinger, Gauge invariance and mass. 2, Phys. Rev.128 (1962) 2425 [INSPIRE]. · Zbl 0099.23002
[10] J.H. Lowenstein and J.A. Swieca, Quantum electrodynamics in two-dimensions, Annals Phys.68 (1971) 172 [INSPIRE].
[11] A. Casher, J.B. Kogut and L. Susskind, Vacuum polarization and the absence of free quarks, Phys. Rev. D10 (1974) 732 [INSPIRE].
[12] S.R. Coleman, R. Jackiw and L. Susskind, Charge shielding and quark confinement in the massive Schwinger model, Annals Phys.93 (1975) 267 [INSPIRE].
[13] S.R. Coleman, More about the massive Schwinger model, Annals Phys.101 (1976) 239 [INSPIRE].
[14] N.S. Manton, The Schwinger model and its axial anomaly, Annals Phys.159 (1985) 220 [INSPIRE].
[15] J.E. Hetrick and Y. Hosotani, QED on a circle, Phys. Rev. D38 (1988) 2621 [INSPIRE].
[16] C. Jayewardena, Schwinger model on S(2), Helv. Phys. Acta61 (1988) 636 [INSPIRE].
[17] Sachs, I.; Wipf, A., Finite temperature Schwinger model, Helv. Phys. Acta, 65, 652 (1992)
[18] C. Adam, Instantons and vacuum expectation values in the Schwinger model, Z. Phys. C63 (1994) 169 [INSPIRE].
[19] C. Adam, The Dyson-Schwinger equations in the instanton vacuum of the Schwinger model, Czech. J. Phys.46 (1996) 893 [hep-ph/9501273] [INSPIRE].
[20] Hetrick, JE; Hosotani, Y.; Iso, S., The massive multi-flavor Schwinger model, Phys. Lett. B, 350, 92 (1995) · doi:10.1016/0370-2693(95)00310-H
[21] Narayanan, R., QED at a finite chemical potential, Phys. Rev. D, 86 (2012) · doi:10.1103/PhysRevD.86.087701
[22] Narayanan, R., Two flavor massless Schwinger model on a torus at a finite chemical potential, Phys. Rev. D, 86 (2012) · doi:10.1103/PhysRevD.86.125008
[23] Lohmayer, R.; Narayanan, R., Phase structure of two-dimensional QED at zero temperature with flavor-dependent chemical potentials and the role of multidimensional theta functions, Phys. Rev. D, 88 (2013) · doi:10.1103/PhysRevD.88.105030
[24] Tanizaki, Y.; Tachibana, M., Multi-flavor massless QED_2at finite densities via Lefschetz thimbles, JHEP, 02, 081 (2017) · doi:10.1007/JHEP02(2017)081
[25] Bañuls, MC; Cichy, K.; Jansen, K.; Cirac, JI, The mass spectrum of the Schwinger model with matrix product states, JHEP, 11, 158 (2013) · doi:10.1007/JHEP11(2013)158
[26] Bañuls, MC, Thermal evolution of the Schwinger model with matrix product operators, Phys. Rev. D, 92 (2015) · doi:10.1103/PhysRevD.92.034519
[27] Bañuls, MC; Cichy, K.; Jansen, K.; Saito, H., Chiral condensate in the Schwinger model with matrix product operators, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.094512
[28] Buyens, B.; Verstraete, F.; Van Acoleyen, K., Hamiltonian simulation of the Schwinger model at finite temperature, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.085018
[29] Buyens, B., Real-time simulation of the Schwinger effect with matrix product states, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.114501
[30] Bañuls, MC, Density induced phase transitions in the Schwinger model: a study with matrix product states, Phys. Rev. Lett., 118 (2017) · doi:10.1103/PhysRevLett.118.071601
[31] Funcke, L.; Jansen, K.; Kühn, S., Topological vacuum structure of the Schwinger model with matrix product states, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.054507
[32] Chakraborty, B., Classically emulated digital quantum simulation of the Schwinger model with a topological term via adiabatic state preparation, Phys. Rev. D, 105 (2022) · doi:10.1103/PhysRevD.105.094503
[33] Honda, M., Classically emulated digital quantum simulation for screening and confinement in the Schwinger model with a topological term, Phys. Rev. D, 105 (2022) · doi:10.1103/PhysRevD.105.014504
[34] Honda, M.; Itou, E.; Kikuchi, Y.; Tanizaki, Y., Negative string tension of a higher-charge Schwinger model via digital quantum simulation, PTEP, 2022, 033B01 (2022) · Zbl 1487.81148
[35] Honda, M.; Itou, E.; Tanizaki, Y., DMRG study of the higher-charge Schwinger model and its ’t Hooft anomaly, JHEP, 11, 141 (2022) · Zbl 1536.81203 · doi:10.1007/JHEP11(2022)141
[36] A. Tomiya, Schwinger model at finite temperature and density with beta VQE, arXiv:2205.08860 [INSPIRE].
[37] Funcke, L.; Jansen, K.; Kühn, S., Exploring the CP-violating Dashen phase in the Schwinger model with tensor networks, Phys. Rev. D, 108 (2023) · doi:10.1103/PhysRevD.108.014504
[38] R. Dempsey et al., Phase diagram of the two-flavor Schwinger model at zero temperature, arXiv:2305.04437 [INSPIRE].
[39] Kharzeev, DE; Kikuchi, Y., Real-time chiral dynamics from a digital quantum simulation, Phys. Rev. Res., 2 (2020) · doi:10.1103/PhysRevResearch.2.023342
[40] de Jong, WA, Quantum simulation of nonequilibrium dynamics and thermalization in the Schwinger model, Phys. Rev. D, 106 (2022) · doi:10.1103/PhysRevD.106.054508
[41] Nguyen, NH, Digital quantum simulation of the Schwinger model and symmetry protection with trapped ions, PRX Quantum, 3 (2022) · doi:10.1103/PRXQuantum.3.020324
[42] Nagano, L.; Bapat, A.; Bauer, CW, Quench dynamics of the Schwinger model via variational quantum algorithms, Phys. Rev. D, 108 (2023) · doi:10.1103/PhysRevD.108.034501
[43] H. Fukaya and T. Onogi, Lattice study of the massive Schwinger model with theta term under Luscher’s ‘admissibility’ condition, Phys. Rev. D68 (2003) 074503 [hep-lat/0305004] [INSPIRE].
[44] Gattringer, C.; Kloiber, T.; Sazonov, V., Solving the sign problems of the massless lattice Schwinger model with a dual formulation, Nucl. Phys. B, 897, 732 (2015) · Zbl 1329.82026 · doi:10.1016/j.nuclphysb.2015.06.017
[45] Gattringer, C.; Kloiber, T.; Müller-Preussker, M., Dual simulation of the two-dimensional lattice U(1) gauge-Higgs model with a topological term, Phys. Rev. D, 92 (2015) · doi:10.1103/PhysRevD.92.114508
[46] Gattringer, C.; Göschl, D.; Sulejmanpasic, T., Dual simulation of the 2d U(1) gauge Higgs model at topological angle θ = π: critical endpoint behavior, Nucl. Phys. B, 935, 344 (2018) · Zbl 1398.81299 · doi:10.1016/j.nuclphysb.2018.08.017
[47] Harada, K.; Sugihara, T.; Taniguchi, M-A; Yahiro, M., The massive Schwinger model with SU(2)_fon the light cone, Phys. Rev. D, 49, 4226 (1994) · doi:10.1103/PhysRevD.49.4226
[48] M. Fishman, S.R. White and E.M. Stoudenmire, The ITensor software library for tensor network calculations, SciPost Phys. Codebases (2022) 4 [arXiv:2007.14822] [INSPIRE].
[49] T.D. Lee and C.-N. Yang, Charge conjugation, a new quantum number G, and selection rules concerning a nucleon anti-nucleon system, Nuovo Cim.10 (1956) 749 [INSPIRE].
[50] J. Frohlich and E. Seiler, The massive Thirring-Schwinger model (QED in two-dimensions): convergence of perturbation theory and particle structure, Helv. Phys. Acta49 (1976) 889 [INSPIRE].
[51] Chen, X.; Gu, Z-C; Wen, X-G, Classification of gapped symmetric phases in one-dimensional spin systems, Phys. Rev. B, 83 (2011) · doi:10.1103/PhysRevB.83.035107
[52] A. Kapustin, Bosonic topological insulators and paramagnets: a view from cobordisms, arXiv:1404.6659 [INSPIRE].
[53] A. Kapustin, Symmetry protected topological phases, anomalies, and cobordisms: beyond group cohomology, arXiv:1403.1467 [INSPIRE].
[54] Misumi, T.; Tanizaki, Y.; Ünsal, M., Fractional θ angle, ’t Hooft anomaly, and quantum instantons in charge-q multi-flavor Schwinger model, JHEP, 07, 018 (2019) · Zbl 1418.83063 · doi:10.1007/JHEP07(2019)018
[55] F.D.M. Haldane, Nonlinear field theory of large spin Heisenberg antiferromagnets. Semiclassically quantized solitons of the one-dimensional easy axis Neel state, Phys. Rev. Lett.50 (1983) 1153 [INSPIRE].
[56] I. Affleck and E.H. Lieb, A proof of part of Haldane’s conjecture on spin chains, Lett. Math. Phys.12 (1986) 57 [INSPIRE].
[57] F.D.M. Haldane, O(3) nonlinear sigma model and the topological distinction between integer- and half-integer-spin antiferromagnets in two dimensions, Phys. Rev. Lett.61 (1988) 1029 [INSPIRE].
[58] I. Affleck, T. Kennedy, E.H. Lieb and H. Tasaki, Rigorous results on valence bond ground states in antiferromagnets, Phys. Rev. Lett.59 (1987) 799 [INSPIRE].
[59] Komargodski, Z.; Sharon, A.; Thorngren, R.; Zhou, X., Comments on Abelian Higgs models and persistent order, SciPost Phys., 6, 003 (2019) · doi:10.21468/SciPostPhys.6.1.003
[60] Komargodski, Z.; Sulejmanpasic, T.; Ünsal, M., Walls, anomalies, and deconfinement in quantum antiferromagnets, Phys. Rev. B, 97 (2018) · doi:10.1103/PhysRevB.97.054418
[61] M. Lajkó, K. Wamer, F. Mila and I. Affleck, Generalization of the Haldane conjecture to SU(3) chains, Nucl. Phys. B924 (2017) 508 [Erratum ibid.949 (2019) 114781] [arXiv:1706.06598] [INSPIRE]. · Zbl 1373.81389
[62] Tanizaki, Y.; Sulejmanpasic, T., Anomaly and global inconsistency matching: θ-angles, SU(3)/U(1)^2nonlinear sigma model, SU(3) chains and its generalizations, Phys. Rev. B, 98 (2018) · doi:10.1103/PhysRevB.98.115126
[63] S.R. Coleman, The quantum sine-Gordon equation as the massive Thirring model, Phys. Rev. D11 (1975) 2088 [INSPIRE].
[64] R.F. Dashen, B. Hasslacher and A. Neveu, The particle spectrum in model field theories from semiclassical functional integral techniques, Phys. Rev. D11 (1975) 3424 [INSPIRE].
[65] J.B. Kogut and L. Susskind, Hamiltonian formulation of Wilson’s lattice gauge theories, Phys. Rev. D11 (1975) 395 [INSPIRE].
[66] L. Susskind, Lattice fermions, Phys. Rev. D16 (1977) 3031 [INSPIRE].
[67] Dempsey, R.; Klebanov, IR; Pufu, SS; Zan, B., Discrete chiral symmetry and mass shift in the lattice Hamiltonian approach to the Schwinger model, Phys. Rev. Res., 4 (2022) · doi:10.1103/PhysRevResearch.4.043133
[68] S.R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett.69 (1992) 2863 [INSPIRE].
[69] S.R. White, Density-matrix algorithms for quantum renormalization groups, Phys. Rev. B48 (1993) 10345 [INSPIRE].
[70] Schollwöck, U., The density-matrix renormalization group, Rev. Mod. Phys., 77, 259 (2005) · Zbl 1205.82073 · doi:10.1103/RevModPhys.77.259
[71] U. Schollwöck, The density-matrix renormalization group in the age of matrix product states, Annals Phys.326 (2011) 96 [INSPIRE]. · Zbl 1213.81178
[72] E. Stoudenmire and S.R. White, Studying two-dimensional systems with the density matrix renormalization group, Ann. Rev. Cond. Matter Phys.3 (2012) 111.
[73] M.L. Wall and L.D. Carr, Out-of-equilibrium dynamics with matrix product states, New J. Phys.14 (2012) 125015.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.