×

Integrability breaking in the rule 54 cellular automaton. (English) Zbl 1507.81105

Summary: Cellular automata have recently attracted a lot of attention as testbeds to explore the emergence of many-body quantum chaos and hydrodynamics. We consider the Rule 54 model, one of the simplest interacting integrable models featuring two species of quasiparticles (solitons), in the presence of an integrability-breaking perturbation that allows solitons to backscatter. We study the onset of thermalization and diffusive hydrodynamics in this model, compute perturbatively the diffusion constant of tracer particles, and comment on its relation to transport coefficients.

MSC:

81Q50 Quantum chaos
37B15 Dynamical aspects of cellular automata
81V70 Many-body theory; quantum Hall effect

Software:

ITensor

References:

[1] Spohn, H., Large Scale Dynamics of Interacting Particles (2012), Berlin: Springer, Berlin
[2] Rothman, D. H.; Zaleski, S., Lattice-Gas Cellular Automata: Simple Models of Complex Hydrodynamics, vol 5 (2004), Cambridge: Cambridge University Press, Cambridge
[3] Hardy, J.; Pomeau, Y.; De Pazzis, O., Time evolution of a two‐dimensional model system: I. Invariant states and time correlation functions, J. Math. Phys., 14, 1746-1759 (1973) · doi:10.1063/1.1666248
[4] Hardy, J.; de Pazzis, O.; Pomeau, Y., Molecular dynamics of a classical lattice gas: transport properties and time correlation functions, Phys. Rev. A, 13, 1949-1961 (1976) · doi:10.1103/physreva.13.1949
[5] Frisch, U.; Hasslacher, B.; Pomeau, Y., Lattice-gas automata for the Navier-Stokes equation, Phys. Rev. Lett., 56, 1505-1508 (1986) · doi:10.1103/physrevlett.56.1505
[6] Wolfram, S., Cellular automaton fluids: I. Basic theory, J. Stat. Phys., 45, 471-526 (1986) · Zbl 0629.76002 · doi:10.1007/bf01021083
[7] DeMasi, A.; Esposito, R.; Lebowitz, J. L.; Presutti, E., Hydrodynamics of stochastic cellular automata, Commun. Math. Phys., 125, 127-145 (1989) · Zbl 0683.68044 · doi:10.1007/bf01217773
[8] Medenjak, M.; Klobas, K.; Prosen, T., Diffusion in deterministic interacting lattice systems, Phys. Rev. Lett., 119 (2017) · doi:10.1103/physrevlett.119.110603
[9] Gopalakrishnan, S.; Zakirov, B., Facilitated quantum cellular automata as simple models with non-thermal eigenstates and dynamics, Quantum Sci. Technol., 3 (2018) · doi:10.1088/2058-9565/aad759
[10] Iaconis, J.; Vijay, S.; Nandkishore, R., Anomalous subdiffusion from subsystem symmetries, Phys. Rev. B, 100 (2019) · doi:10.1103/physrevb.100.214301
[11] Iadecola, T.; Vijay, S., Nonergodic quantum dynamics from deformations of classical cellular automata, Phys. Rev. B, 102 (2020) · doi:10.1103/physrevb.102.180302
[12] Feldmeier, J.; Sala, P.; De Tomasi, G.; Pollmann, F.; Knap, M., Anomalous diffusion in dipole- and higher-moment-conserving systems, Phys. Rev. Lett., 125 (2020) · doi:10.1103/physrevlett.125.245303
[13] Iaconis, J.; Lucas, A.; Nandkishore, R., Multipole conservation laws and subdiffusion in any dimension, Phys. Rev. E, 103 (2021) · doi:10.1103/physreve.103.022142
[14] Pozsgay, B., A Yang-Baxter integrable cellular automaton with a four site update rule (2021)
[15] Gombor, T.; Pozsgay, B., Integrable spin chains and cellular automata with medium-range interaction, Phys. Rev. E, 104 (2021) · doi:10.1103/physreve.104.054123
[16] Gombor, T.; Pozsgay, B., Superintegrable cellular automata and dual unitary gates from Yang-Baxter maps (2021)
[17] Prosen, T., Reversible cellular automata as integrable interactions round-a-face: deterministic, stochastic, and quantized (2021)
[18] Prosen, T., Many body quantum chaos and dual unitarity round-a-face (2021) · Zbl 07866694
[19] Prosen, T.; Mejía-Monasterio, C., Integrability of a deterministic cellular automaton driven by stochastic boundaries, J. Phys. A: Math. Theor., 49 (2016) · Zbl 1365.37014 · doi:10.1088/1751-8113/49/18/185003
[20] Klobas, K.; Medenjak, M.; Prosen, T.; Vanicat, M., Time-dependent matrix product ansatz for interacting reversible dynamics, Commun. Math. Phys., 371, 651-688 (2019) · Zbl 1428.82036 · doi:10.1007/s00220-019-03494-5
[21] Klobas, K.; Vanicat, M.; Garrahan, J. P.; Prosen, T., Matrix product state of multi-time correlations, J. Phys. A: Math. Theor., 53 (2020) · Zbl 1519.82015 · doi:10.1088/1751-8121/ab8c62
[22] Wilkinson, J. W P.; Klobas, K.; Prosen, T.; Garrahan, J. P., Exact solution of the Floquet-PXP cellular automaton, Phys. Rev. E, 102 (2020) · doi:10.1103/physreve.102.062107
[23] Klobas, K.; Bertini, B., Exact relaxation to Gibbs and non-equilibrium steady states in the quantum cellular automaton Rule 54, SciPost Phys., 11, 106 (2021) · doi:10.21468/scipostphys.11.6.106
[24] Gopalakrishnan, S., Operator growth and eigenstate entanglement in an interacting integrable Floquet system, Phys. Rev. B, 98 (2018) · doi:10.1103/physrevb.98.060302
[25] Gopalakrishnan, S.; Huse, D. A.; Khemani, V.; Vasseur, R., Hydrodynamics of operator spreading and quasiparticle diffusion in interacting integrable systems, Phys. Rev. B, 98 (2018) · doi:10.1103/physrevb.98.220303
[26] Alba, V.; Dubail, J.; Medenjak, M., Operator entanglement in interacting integrable quantum systems: the case of the Rule 54 chain, Phys. Rev. Lett., 122 (2019) · doi:10.1103/physrevlett.122.250603
[27] Klobas, K.; Bertini, B., Entanglement dynamics in Rule 54: exact results and quasiparticle picture, SciPost Phys., 11, 107 (2021) · doi:10.21468/scipostphys.11.6.107
[28] Friedman, A. J.; Gopalakrishnan, S.; Vasseur, R., Integrable many-body quantum Floquet-Thouless pumps, Phys. Rev. Lett., 123 (2019) · doi:10.1103/physrevlett.123.170603
[29] Buča, B.; Klobas, K.; Prosen, T., Rule 54: exactly solvable model of nonequilibrium statistical mechanics (2021) · Zbl 1539.82195
[30] Klobas, K.; Bertini, B.; Piroli, L., Exact thermalization dynamics in the ‘Rule 54’ quantum cellular automaton, Phys. Rev. Lett., 126 (2021) · doi:10.1103/physrevlett.126.160602
[31] Zotos, X.; Prelovšek, P., Evidence for ideal insulating or conducting state in a one-dimensional integrable system, Phys. Rev. B, 53, 983-986 (1996) · doi:10.1103/physrevb.53.983
[32] Jung, P.; Rosch, A., Spin conductivity in almost integrable spin chains, Phys. Rev. B, 76 (2007) · doi:10.1103/physrevb.76.245108
[33] Žnidarič, M., Coexistence of diffusive and ballistic transport in a simple spin ladder, Phys. Rev. Lett., 110 (2013) · doi:10.1103/physrevlett.110.070602
[34] Karrasch, C.; Kennes, D. M.; Heidrich-Meisner, F., Spin and thermal conductivity of quantum spin chains and ladders, Phys. Rev. B, 91 (2015) · doi:10.1103/physrevb.91.115130
[35] Steinigeweg, R.; Heidrich-Meisner, F.; Gemmer, J.; Michielsen, K.; De Raedt, H., Scaling of diffusion constants in the spin-\(####\) XX ladder, Phys. Rev. B, 90 (2014) · doi:10.1103/physrevb.90.094417
[36] Biella, A.; De Luca, A.; Viti, J.; Rossini, D.; Mazza, L.; Fazio, R., Energy transport between two integrable spin chains, Phys. Rev. B, 93 (2016) · doi:10.1103/physrevb.93.205121
[37] Bertini, B.; Essler, F. H L.; Groha, S.; Robinson, N. J., Prethermalization and thermalization in models with weak integrability breaking, Phys. Rev. Lett., 115 (2015) · doi:10.1103/physrevlett.115.180601
[38] Bertini, B.; Essler, F. H L.; Groha, S.; Robinson, N. J., Thermalization and light cones in a model with weak integrability breaking, Phys. Rev. B, 94 (2016) · doi:10.1103/physrevb.94.245117
[39] Rosch, A.; Andrei, N., Conductivity of a clean one-dimensional wire, Phys. Rev. Lett., 85, 1092-1095 (2000) · doi:10.1103/physrevlett.85.1092
[40] Sirker, J.; Pereira, R. G.; Affleck, I., Diffusion and ballistic transport in one-dimensional quantum systems, Phys. Rev. Lett., 103 (2009) · doi:10.1103/physrevlett.103.216602
[41] Sirker, J.; Pereira, R. G.; Affleck, I., Conservation laws, integrability, and transport in one-dimensional quantum systems, Phys. Rev. B, 83 (2011) · doi:10.1103/physrevb.83.035115
[42] Huang, Y.; Karrasch, C.; Moore, J. E., Scaling of electrical and thermal conductivities in an almost integrable chain, Phys. Rev. B, 88 (2013) · doi:10.1103/physrevb.88.115126
[43] Garg, A.; Rasch, D.; Shimshoni, E.; Rosch, A., Large violation of the Wiedemann-Franz law in Luttinger liquids, Phys. Rev. Lett., 103 (2009) · doi:10.1103/physrevlett.103.239903
[44] Fürst, M. L R.; Mendl, C. B.; Spohn, H., Matrix-valued Boltzmann equation for the Hubbard chain, Phys. Rev. E, 86 (2012) · doi:10.1103/physreve.86.031122
[45] Fürst, M. L R.; Mendl, C. B.; Spohn, H., Matrix-valued Boltzmann equation for the nonintegrable Hubbard chain, Phys. Rev. E, 88 (2013) · doi:10.1103/physreve.88.012108
[46] Stark, M.; Kollar, M., Kinetic description of thermalization dynamics in weakly interacting quantum systems (2013)
[47] Vidmar, L.; Rigol, M., Generalized Gibbs ensemble in integrable lattice models, J. Stat. Mech. (2016) · Zbl 1456.81118 · doi:10.1088/1742-5468/2016/06/064007
[48] D’Alessio, L.; Kafri, Y.; Polkovnikov, A.; Rigol, M., From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics, Adv. Phys., 65, 239-362 (2016) · doi:10.1080/00018732.2016.1198134
[49] Žnidarič, M., Weak integrability breaking: chaos with integrability signature in coherent diffusion, Phys. Rev. Lett., 125 (2020) · doi:10.1103/physrevlett.125.180605
[50] Ferreira, J. S.; Filippone, M., Ballistic-to-diffusive transition in spin chains with broken integrability, Phys. Rev. B, 102 (2020) · doi:10.1103/physrevb.102.184304
[51] Znidaric, M., Less is more: more scattering leading to less resistance (2021)
[52] Bulchandani, V. B.; Huse, D. A.; Gopalakrishnan, S., Onset of many-body quantum chaos due to breaking integrability (2021)
[53] Bertini, B.; Heidrich-Meisner, F.; Karrasch, C.; Prosen, T.; Steinigeweg, R.; Žnidarič, M., Finite-temperature transport in one-dimensional quantum lattice models, Rev. Mod. Phys., 93 (2021) · doi:10.1103/revmodphys.93.025003
[54] Castro-Alvaredo, O. A.; Doyon, B.; Yoshimura, T., Emergent hydrodynamics in integrable quantum systems out of equilibrium, Phys. Rev. X, 6 (2016) · doi:10.1103/physrevx.6.041065
[55] Bertini, B.; Collura, M.; De Nardis, J.; Fagotti, M., Transport in out-of-equilibrium XXZ chains: exact profiles of charges and currents, Phys. Rev. Lett., 117 (2016) · doi:10.1103/physrevlett.117.207201
[56] Doyon, B., Lecture notes on generalised hydrodynamics, SciPost Phys. Lect. Notes, 018 (2020) · doi:10.21468/scipostphyslectnotes.18
[57] Friedman, A. J.; Gopalakrishnan, S.; Vasseur, R., Diffusive hydrodynamics from integrability breaking, Phys. Rev. B, 101 (2020) · doi:10.1103/physrevb.101.180302
[58] Durnin, J.; Bhaseen, M.; Doyon, B., Non-equilibrium dynamics and weakly broken integrability (2020)
[59] Lopez-Piqueres, J.; Ware, B.; Gopalakrishnan, S.; Vasseur, R., Hydrodynamics of nonintegrable systems from a relaxation-time approximation, Phys. Rev. B, 103, L060302 (2021) · doi:10.1103/physrevb.103.l060302
[60] Møller, F.; Li, C.; Mazets, I.; Stimming, H-P; Zhou, T.; Zhu, Z.; Chen, X.; Schmiedmayer, J., Extension of the generalized hydrodynamics to the dimensional crossover regime, Phys. Rev. Lett., 126 (2021) · doi:10.1103/physrevlett.126.090602
[61] Bastianello, A.; De Nardis, J.; De Luca, A., Generalized hydrodynamics with dephasing noise, Phys. Rev. B, 102 (2020) · doi:10.1103/physrevb.102.161110
[62] Bastianello, A.; De Luca, A.; Vasseur, R., Hydrodynamics of weak integrability breaking (2021) · Zbl 1539.82058
[63] Tang, Y.; Kao, W.; Li, K-Y; Seo, S.; Mallayya, K.; Rigol, M.; Gopalakrishnan, S.; Lev, B. L., Thermalization near integrability in a dipolar quantum Newton’s cradle, Phys. Rev. X, 8 (2018) · doi:10.1103/physrevx.8.021030
[64] Martin, O.; Odlyzko, A. M.; Wolfram, S., Algebraic properties of cellular automata, Commun. Math. Phys., 93, 219-258 (1984) · Zbl 0564.68038 · doi:10.1007/bf01223745
[65] Schollwöck, U., The density-matrix renormalization group in the age of matrix product states, Ann. Phys., 326, 96-192 (2011) · Zbl 1213.81178 · doi:10.1016/j.aop.2010.09.012
[66] Bobenko, A.; Bordemann, M.; Gunn, C.; Pinkall, U., On two integrable cellular automata, Commun. Math. Phys., 158, 127-134 (1993) · Zbl 0795.35098 · doi:10.1007/bf02097234
[67] Yang, C. N.; Yang, C. P., Thermodynamics of a one‐dimensional system of bosons with repulsive delta‐function interaction, J. Math. Phys., 10, 1115-1122 (1969) · Zbl 0987.82503 · doi:10.1063/1.1664947
[68] Takahashi, M., Thermodynamics of One-Dimensional Solvable Models (2005), Cambridge: Cambridge University Press, Cambridge · Zbl 1069.78001
[69] De Nardis, J.; Doyon, B.; Medenjak, M.; Panfil, M., Correlation functions and transport coefficients in generalised hydrodynamics (2021)
[70] De Nardis, J.; Bernard, D.; Doyon, B., Diffusion in generalized hydrodynamics and quasiparticle scattering, SciPost Phys., 6, 049 (2019) · doi:10.21468/scipostphys.6.4.049
[71] Ilievski, E.; De Nardis, J., Ballistic transport in the one-dimensional Hubbard model: the hydrodynamic approach, Phys. Rev. B, 96 (2017) · doi:10.1103/physrevb.96.081118
[72] Doyon, B.; Spohn, H., Drude weight for the Lieb-Liniger Bose gas, SciPost Phys., 3, 039 (2017) · doi:10.21468/scipostphys.3.6.039
[73] De Nardis, J.; Bernard, D.; Doyon, B., Hydrodynamic diffusion in integrable systems, Phys. Rev. Lett., 121 (2018) · doi:10.1103/physrevlett.121.160603
[74] Fujimoto, S.; Kawakami, N., Exact drude weight for the one-dimensional Hubbard model at finite temperatures, J. Phys. A: Math. Gen., 31, 465 (1998) · Zbl 0953.82013 · doi:10.1088/0305-4470/31/2/008
[75] Zotos, X., Finite temperature drude weight of the one-dimensional spin-1/2 Heisenberg model, Phys. Rev. Lett., 82, 1764 (1999) · doi:10.1103/physrevlett.82.1764
[76] Klümper, A.; Sakai, K., The thermal conductivity of the spin-½ XXZ chain at arbitrary temperature, J. Phys. A: Math. Gen., 35, 2173 (2002) · Zbl 1002.82019 · doi:10.1088/0305-4470/35/9/307
[77] Sakai, K.; Klümper, A., Non-dissipative thermal transport in the massive regimes of the XXZ chain, J. Phys. A: Math. Gen., 36, 11617 (2003) · Zbl 1039.82028 · doi:10.1088/0305-4470/36/46/006
[78] Prosen, T., Open XXZ spin chain: nonequilibrium steady state and a strict bound on ballistic transport, Phys. Rev. Lett., 106 (2011) · doi:10.1103/physrevlett.106.217206
[79] Prosen, T.; Ilievski, E., Families of quasilocal conservation laws and quantum spin transport, Phys. Rev. Lett., 111 (2013) · doi:10.1103/physrevlett.111.057203
[80] Bulchandani, V. B.; Vasseur, R.; Karrasch, C.; Moore, J. E., Bethe-Boltzmann hydrodynamics and spin transport in the XXZ chain, Phys. Rev. B, 97 (2018) · doi:10.1103/physrevb.97.045407
[81] Ilievski, E.; De Nardis, J., Microscopic origin of ideal conductivity in integrable quantum models, Phys. Rev. Lett., 119 (2017) · doi:10.1103/physrevlett.119.020602
[82] Bouchoule, I.; Dubail, J., Generalized hydrodynamics in the 1D Bose gas: theory and experiments (2021)
[83] Bulchandani, V. B.; Vasseur, R.; Karrasch, C.; Moore, J. E., Solvable hydrodynamics of quantum integrable systems, Phys. Rev. Lett., 119 (2017) · doi:10.1103/physrevlett.119.220604
[84] Bastianello, A.; Alba, V.; Caux, J-S, Generalized hydrodynamics with space-time inhomogeneous interactions, Phys. Rev. Lett., 123 (2019) · doi:10.1103/physrevlett.123.130602
[85] Gopalakrishnan, S.; Vasseur, R., Kinetic theory of spin diffusion and superdiffusion in XXZ spin chains, Phys. Rev. Lett., 122 (2019) · doi:10.1103/physrevlett.122.127202
[86] Marcuzzi, M.; Marino, J.; Gambassi, A.; Silva, A., Prethermalization in a nonintegrable quantum spin chain after a quench, Phys. Rev. Lett., 111 (2013) · doi:10.1103/physrevlett.111.197203
[87] Kollar, M.; Wolf, F. A.; Eckstein, M., Generalized Gibbs ensemble prediction of prethermalization plateaus and their relation to nonthermal steady states in integrable systems, Phys. Rev. B, 84 (2011) · doi:10.1103/physrevb.84.054304
[88] Langen, T.; Gasenzer, T.; Schmiedmayer, J., Prethermalization and universal dynamics in near-integrable quantum systems, J. Stat. Mech. (2016) · Zbl 1456.81242 · doi:10.1088/1742-5468/2016/06/064009
[89] Biebl, F. R A.; Kehrein, S., Thermalization rates in the one-dimensional Hubbard model with next-to-nearest neighbor hopping, Phys. Rev. B, 95 (2017) · doi:10.1103/physrevb.95.104304
[90] Mallayya, K.; Rigol, M.; De Roeck, W., Prethermalization and thermalization in isolated quantum systems, Phys. Rev. X, 9 (2019) · doi:10.1103/physrevx.9.021027
[91] Lifschitz, E.; Pitajewski, L., Physical kinetics, Textbook of Theoretical Physics, vol 10 (1981), Amsterdam: Elsevier, Amsterdam · doi:10.1016/C2009-0-25523-1
[92] Nielsen, M. A.; Chuang, I., Quantum Computation and Quantum Information (2002), Cambridge: Cambridge University Press, Cambridge
[93] Orús, R., A practical introduction to tensor networks: matrix product states and projected entangled pair states, Ann. Phys., NY, 349, 117-158 (2014) · Zbl 1343.81003 · doi:10.1016/j.aop.2014.06.013
[94] Fishman, M.; White, S. R.; Stoudenmire, E. M., The itensor software library for tensor network calculations (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.