×

Committor functions via tensor networks. (English) Zbl 07620352

Summary: We propose a novel approach for computing committor functions, which describe transitions of a stochastic process between metastable states. The committor function satisfies a backward Kolmogorov equation, and in typical high-dimensional settings of interest, it is intractable to compute and store the solution with traditional numerical methods. By parametrizing the committor function in a matrix product state/tensor train format and using a similar representation for the equilibrium probability density, we solve the variational formulation of the backward Kolmogorov equation with linear time and memory complexity in the number of dimensions. This approach bypasses the need for sampling the equilibrium distribution, which can be difficult when the distribution has multiple modes. Numerical results demonstrate the effectiveness of the proposed method for high-dimensional problems.

MSC:

60Hxx Stochastic analysis
65Fxx Numerical linear algebra
65Nxx Numerical methods for partial differential equations, boundary value problems

Software:

ITensor; DGM

References:

[1] Affleck, I.; Kennedy, T.; Lieb, E. H.; Tasaki, H., Valence bond ground states in isotropic quantum antiferromagnets, (Condensed Matter Physics and Exactly Soluble Models (1988), Springer), 253-304
[2] Bachmayr, M.; Schneider, R.; Uschmajew, A., Tensor networks and hierarchical tensors for the solution of high-dimensional partial differential equations, Found. Comput. Math., 16, 1423-1472 (2016) · Zbl 1357.65153
[3] Baiardi, A.; Reiher, M., The density matrix renormalization group in chemistry and molecular physics: recent developments and new challenges, J. Chem. Phys., 152, Article 040903 pp. (2020)
[4] Berteotti, A.; Cavalli, A.; Branduardi, D.; Gervasio, F. L.; Recanatini, M.; Parrinello, M., Protein conformational transitions: the closure mechanism of a kinase explored by atomistic simulations, J. Am. Chem. Soc., 131, 244-250 (2009)
[5] Bhattacharya, R. N.; Waymire, E. C., Stochastic Processes with Applications (2009), SIAM · Zbl 1171.60333
[6] Blum, A.; Hopcroft, J.; Kannan, R., Foundations of data science, (Vorabversion eines Lehrbuchs (2016)), 5
[7] Coifman, R. R.; Kevrekidis, I. G.; Lafon, S.; Maggioni, M.; Nadler, B., Diffusion maps, reduction coordinates, and low dimensional representation of stochastic systems, Multiscale Model. Simul., 7, 842-864 (2008) · Zbl 1175.60058
[8] Deutsch, D. E., Quantum computational networks, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 425, 73-90 (1989) · Zbl 0691.68054
[9] Evenbly, G.; Vidal, G., Tensor network states and geometry, J. Stat. Phys., 145, 891-918 (2011) · Zbl 1231.82021
[10] Fishman, M.; White, S.; Stoudenmire, E., The ITensor software library for tensor network calculations, SciPost Physics Codebases, Article 004 pp. (2022)
[11] Grant, B. J.; Gorfe, A. A.; McCammon, J. A., Large conformational changes in proteins: signaling and other functions, Curr. Opin. Struct. Biol., 20, 142-147 (2010)
[12] Grasedyck, L., Hierarchical low rank approximation of tensors and multivariate functions, (Lecture Notes of the Zürich Summer School on Sparse Tensor Discretizations of High-Dimensional Problems (2010))
[13] Grasedyck, L.; Kressner, D.; Tobler, C., A literature survey of low-rank tensor approximation techniques, GAMM-Mitt., 36, 53-78 (2013) · Zbl 1279.65045
[14] Hackbusch, W.; Khoromskij, B. N.; Tyrtyshnikov, E. E., Hierarchical Kronecker tensor-product approximations (2005), Walter de Gruyter: Walter de Gruyter Berlin, Germany · Zbl 1081.65035
[15] Han, J.; Jentzen, A.; Weinan, E., Solving high-dimensional partial differential equations using deep learning, Proc. Natl. Acad. Sci., 115, 8505-8510 (2018) · Zbl 1416.35137
[16] Hitchcock, F. L., The expression of a tensor or a polyadic as a sum of products, J. Math. Phys., 6, 164-189 (1927) · JFM 53.0095.01
[17] Hoffmann, K.-H.; Tang, Q., Ginzburg-Landau Phase Transition Theory and Superconductivity, vol. 134 (2012), Birkhäuser
[18] Hyatt, K.; Stoudenmire, E. M., DMRG approach to optimizing two-dimensional tensor networks (2019), arXiv preprint
[19] Khoo, Y.; Lu, J.; Ying, L., Solving for high-dimensional committor functions using artificial neural networks, Res. Math. Sci., 6, 1-13 (2019) · Zbl 1498.60222
[20] Khoo, Y.; Lu, J.; Ying, L., Solving parametric PDE problems with artificial neural networks, Eur. J. Appl. Math., 32, 421-435 (2021) · Zbl 1501.65154
[21] Khoromskij, B. N., Tensor numerical methods for multidimensional PDEs: theoretical analysis and initial applications, ESAIM Proc. Surv., 48, 1-28 (2015) · Zbl 1382.65461
[22] Khoromskij, B. N.; Schwab, C., Tensor-structured Galerkin approximation of parametric and stochastic elliptic PDEs, SIAM J. Sci. Comput., 33, 364-385 (2011) · Zbl 1243.65009
[23] Kolda, T. G.; Bader, B. W., Tensor decompositions and applications, SIAM Rev., 51, 455-500 (2009) · Zbl 1173.65029
[24] Lai, R.; Lu, J., Point cloud discretization of Fokker-Planck operators for committor functions, Multiscale Model. Simul., 16, 710-726 (2018) · Zbl 1431.65235
[25] Lasaga, A. C., 2. Transition state theory, (Kinetic Theory in the Earth Sciences (2014), Princeton University Press), 152-219
[26] Li, H.; Khoo, Y.; Ren, Y.; Ying, L., A semigroup method for high dimensional committor functions based on neural network (2020), arXiv preprint
[27] Li, H.; Khoo, Y.; Ren, Y.; Ying, L., Solving for high dimensional committor functions using neural network with online approximation to derivatives (2020), arXiv preprint
[28] Li, Q.; Lin, B.; Ren, W., Computing committor functions for the study of rare events using deep learning, J. Chem. Phys., 151, Article 054112 pp. (2019)
[29] Little, G.; Reade, J., Eigenvalues of analytic kernels, SIAM J. Math. Anal., 15, 133-136 (1984) · Zbl 0536.45004
[30] Lu, J.; Nolen, J., Reactive trajectories and the transition path process, Probab. Theory Relat. Fields, 161, 195-244 (2015) · Zbl 1343.60074
[31] Lu, J.; Vanden-Eijnden, E., Exact dynamical coarse-graining without time-scale separation, J. Chem. Phys., 141 (2014), 07B619_1
[32] Maragliano, L.; Fischer, A.; Vanden-Eijnden, E.; Ciccotti, G., String method in collective variables: minimum free energy paths and isocommittor surfaces, J. Chem. Phys., 125, Article 024106 pp. (2006)
[33] Okuyama-Yoshida, N.; Nagaoka, M.; Yamabe, T., Transition-state optimization on free energy surface: toward solution chemical reaction ergodography, Int. J. Quant. Chem., 70, 95-103 (1998)
[34] Orús, R., Advances on tensor network theory: symmetries, fermions, entanglement, and holography, Eur. Phys. J. B, 87, 1-18 (2014)
[35] Orús, R., A practical introduction to tensor networks: matrix product states and projected entangled pair states, Ann. Phys., 349, 117-158 (2014) · Zbl 1343.81003
[36] Oseledets, I. V., Tensor-train decomposition, SIAM J. Sci. Comput., 33, 2295-2317 (2011) · Zbl 1232.15018
[37] Perez-Garcia, D.; Verstraete, F.; Wolf, M. M.; Cirac, J. I., Matrix product state representations (2006), arXiv preprint · Zbl 1152.81795
[38] Raissi, M.; Perdikaris, P.; Karniadakis, G. E., Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378, 686-707 (2019) · Zbl 1415.68175
[39] Ren, W.; Vanden-Eijnden, E.; Maragakis, P.; E, W., Transition pathways in complex systems: application of the finite-temperature string method to the alanine dipeptide, J. Chem. Phys., 123, Article 134109 pp. (2005)
[40] Richter, L.; Sallandt, L.; Nüsken, N., Solving high-dimensional parabolic PDEs using the tensor train format, (International Conference on Machine Learning, PMLR (2021)), 8998-9009
[41] Rotskoff, G. M.; Mitchell, A. R.; Vanden-Eijnden, E., Active importance sampling for variational objectives dominated by rare events: consequences for optimization and generalization (2020), arXiv preprint
[42] Rotskoff, G. M.; Vanden-Eijnden, E., Learning with rare data: using active importance sampling to optimize objectives dominated by rare events (2020), arXiv preprint
[43] Savostyanov, D. V.; Dolgov, S.; Werner, J.; Kuprov, I., Exact NMR simulation of protein-size spin systems using tensor train formalism, Phys. Rev. B, 90, Article 085139 pp. (2014)
[44] Sirignano, J.; Spiliopoulos, K., DGM: a deep learning algorithm for solving partial differential equations, J. Comput. Phys., 375, 1339-1364 (2018) · Zbl 1416.65394
[45] Thiede, E. H.; Giannakis, D.; Dinner, A. R.; Weare, J., Galerkin approximation of dynamical quantities using trajectory data, J. Chem. Phys., 150, Article 244111 pp. (2019)
[46] Trefethen, L. N., Approximation Theory and Approximation Practice (2013), SIAM · Zbl 1264.41001
[47] Tucker, L. R., Some mathematical notes on three-mode factor analysis, Psychometrika, 31, 279-311 (1966)
[48] Vanden-Eijnden, E., Transition-path theory and path-finding algorithms for the study of rare events, Annu. Rev. Phys. Chem., 61, 391-420 (2010)
[49] Vanden-Eijnden, E.; Venturoli, M., Revisiting the finite temperature string method for the calculation of reaction tubes and free energies, J. Chem. Phys., 130 (2009), 05B605
[50] Vershynin, R., High-dimensional Probability: An Introduction with Applications in Data Science, vol. 47 (2018), Cambridge University Press · Zbl 1430.60005
[51] Verstraete, F.; Murg, V.; Cirac, J. I., Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems, Adv. Phys., 57, 143-224 (2008)
[52] Weinan, E.; Ren, W.; Vanden-Eijnden, E., Transition pathways in complex systems: reaction coordinates, isocommittor surfaces, and transition tubes, Chem. Phys. Lett., 413, 242-247 (2005)
[53] Weinan, E.; Ren, W.; Vanden-Eijnden, E., Finite temperature string method for the study of rare events, J. Phys. Chem. B, 109, 6688-6693 (2005)
[54] Weinan, E.; Vanden-Eijnden, E., Towards a theory of transition paths, J. Stat. Phys., 123, 503-523 (2006) · Zbl 1101.82016
[55] Weinan, E.; Yu, B., The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems, Commun. Math. Stat., 6, 1-12 (2018) · Zbl 1392.35306
[56] White, S. R., Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett., 69, 2863 (1992)
[57] Zahn, D.; Leoni, S., Nucleation and growth in pressure-induced phase transitions from molecular dynamics simulations: mechanism of the reconstructive transformation of NaCl to the CsCl-type structure, Phys. Rev. Lett., 92, Article 250201 pp. (2004)
[58] Zhao, B.; Li, L.; Lu, F.; Zhai, Q.; Yang, B.; Schick, C.; Gao, Y., Phase transitions and nucleation mechanisms in metals studied by nanocalorimetry: a review, Thermochim. Acta, 603, 2-23 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.