×

DMRG study of the higher-charge Schwinger model and its ’t Hooft anomaly. (English) Zbl 1536.81203

Summary: The charge-\(q\) Schwinger model is the \((1 + 1)\)-dimensional quantum electrodynamics (QED) with a charge-\(q\) Dirac fermion. It has the \(\mathbb{Z}_q\) 1-form symmetry and also enjoys the \(\mathbb{Z}_q\) chiral symmetry in the chiral limit, and there is a mixed ’t Hooft anomaly between those symmetries. We numerically study the charge-\(q\) Schwinger model in the lattice Hamiltonian formulation using the density-matrix renormalization group (DMRG). When applying DMRG, we map the Schwinger model to a spin chain with nonlocal interaction via Jordan-Wigner transformation, and we take the open boundary condition instead of the periodic one to make the Hilbert space finite-dimensional. When computing the energy density or chiral condensate, we find that using local operators significantly reduces the boundary effect compared with the computation of corresponding extensive quantities divided by the volume. To discuss the consequence of the ’t Hooft anomaly, we carefully treat the renormalization of the chiral condensates, and then we confirm that Wilson loops generate the discrete chiral transformations in the continuum limit.

MSC:

81T50 Anomalies in quantum field theory
81V10 Electromagnetic interaction; quantum electrodynamics
81T13 Yang-Mills and other gauge theories in quantum field theory
81R40 Symmetry breaking in quantum theory

Software:

ITensor

References:

[1] Anber, MM; Poppitz, E., Anomaly matching, (axial) Schwinger models, and high-T super Yang-Mills domain walls, JHEP, 09, 076 (2018) · Zbl 1398.81150 · doi:10.1007/JHEP09(2018)076
[2] Anber, MM; Poppitz, E., Domain walls in high-T SU(N) super Yang-Mills theory and QCD(adj), JHEP, 05, 151 (2019) · doi:10.1007/JHEP05(2019)151
[3] Armoni, A.; Sugimoto, S., Vacuum structure of charge k two-dimensional QED and dynamics of an anti D-string near an O1^−-plane, JHEP, 03, 175 (2019) · doi:10.1007/JHEP03(2019)175
[4] Misumi, T.; Tanizaki, Y.; Ünsal, M., Fractional θ angle, ’t Hooft anomaly, and quantum instantons in charge-q multi-flavor Schwinger model, JHEP, 07, 018 (2019) · Zbl 1418.83063 · doi:10.1007/JHEP07(2019)018
[5] Schwinger, JS, Gauge Invariance and Mass. II, Phys. Rev., 128, 2425 (1962) · Zbl 0118.44001 · doi:10.1103/PhysRev.128.2425
[6] T. Pantev and E. Sharpe, Notes on gauging noneffective group actions, hep-th/0502027 [INSPIRE].
[7] T. Pantev and E. Sharpe, String compactifications on Calabi-Yau stacks, Nucl. Phys. B733 (2006) 233 [hep-th/0502044] [INSPIRE]. · Zbl 1119.81091
[8] Pantev, T.; Sharpe, E., GLSM’s for Gerbes (and other toric stacks), Adv. Theor. Math. Phys., 10, 77 (2006) · Zbl 1119.14038 · doi:10.4310/ATMP.2006.v10.n1.a4
[9] Hellerman, S.; Henriques, A.; Pantev, T.; Sharpe, E.; Ando, M., Cluster decomposition, T-duality, and gerby CFT’s, Adv. Theor. Math. Phys., 11, 751 (2007) · Zbl 1156.81039 · doi:10.4310/ATMP.2007.v11.n5.a2
[10] Hellerman, S.; Sharpe, E., Sums over topological sectors and quantization of Fayet-Iliopoulos parameters, Adv. Theor. Math. Phys., 15, 1141 (2011) · Zbl 1250.83057 · doi:10.4310/ATMP.2011.v15.n4.a7
[11] Adler, SL, Axial vector vertex in spinor electrodynamics, Phys. Rev., 177, 2426 (1969) · doi:10.1103/PhysRev.177.2426
[12] J.S. Bell and R. Jackiw, A PCAC puzzle: π^0 → γγ in the σ model, Nuovo Cim. A60 (1969) 47 [INSPIRE].
[13] Lowenstein, JH; Swieca, JA, Quantum electrodynamics in two-dimensions, Annals Phys., 68, 172 (1971) · doi:10.1016/0003-4916(71)90246-6
[14] Coleman, SR; Jackiw, R.; Susskind, L., Charge Shielding and Quark Confinement in the Massive Schwinger Model, Annals Phys., 93, 267 (1975) · doi:10.1016/0003-4916(75)90212-2
[15] Coleman, SR, More About the Massive Schwinger Model, Annals Phys., 101, 239 (1976) · doi:10.1016/0003-4916(76)90280-3
[16] Manton, NS, The Schwinger Model and Its Axial Anomaly, Annals Phys., 159, 220 (1985) · doi:10.1016/0003-4916(85)90199-X
[17] Faddeev, LD; Shatashvili, SL, Realization of the Schwinger Term in the Gauss Law and the Possibility of Correct Quantization of a Theory with Anomalies, Phys. Lett. B, 167, 225 (1986) · doi:10.1016/0370-2693(86)90604-0
[18] Jayewardena, C., Schwinger Model On S_2, Helv. Phys. Acta, 61, 636 (1988)
[19] J.E. Hetrick and Y. Hosotani, QED on a circle, Phys. Rev. D38 (1988) 2621 [INSPIRE].
[20] Iso, S.; Murayama, H., Hamiltonian Formulation of the Schwinger Model: Nonconfinement and Screening of the Charge, Prog. Theor. Phys., 84, 142 (1990) · Zbl 1098.81806 · doi:10.1143/ptp/84.1.142
[21] Smilga, AV, On the fermion condensate in Schwinger model, Phys. Lett. B, 278, 371 (1992) · doi:10.1016/0370-2693(92)90209-M
[22] C. Adam, Instantons and vacuum expectation values in the Schwinger model, Z. Phys. C63 (1994) 169 [INSPIRE].
[23] Adam, C., Massive Schwinger model within mass perturbation theory, Annals Phys., 259, 1 (1997) · Zbl 0930.46060 · doi:10.1006/aphy.1997.5697
[24] Gaiotto, D.; Kapustin, A.; Seiberg, N.; Willett, B., Generalized Global Symmetries, JHEP, 02, 172 (2015) · Zbl 1388.83656 · doi:10.1007/JHEP02(2015)172
[25] D. Gaiotto, A. Kapustin, Z. Komargodski and N. Seiberg, Theta, Time Reversal, and Temperature, JHEP05 (2017) 091 [arXiv:1703.00501] [INSPIRE]. · Zbl 1380.83255
[26] Tanizaki, Y.; Kikuchi, Y., Vacuum structure of bifundamental gauge theories at finite topological angles, JHEP, 06, 102 (2017) · Zbl 1380.81375 · doi:10.1007/JHEP06(2017)102
[27] Komargodski, Z.; Sharon, A.; Thorngren, R.; Zhou, X., Comments on Abelian Higgs Models and Persistent Order, SciPost Phys., 6, 003 (2019) · doi:10.21468/SciPostPhys.6.1.003
[28] Z. Komargodski, T. Sulejmanpasic and M. Ünsal, Walls, anomalies, and deconfinement in quantum antiferromagnets, Phys. Rev. B97 (2018) 054418 [arXiv:1706.05731] [INSPIRE].
[29] H. Shimizu and K. Yonekura, Anomaly constraints on deconfinement and chiral phase transition, Phys. Rev. D97 (2018) 105011 [arXiv:1706.06104] [INSPIRE].
[30] Gaiotto, D.; Komargodski, Z.; Seiberg, N., Time-reversal breaking in QCD_4, walls, and dualities in 2 + 1 dimensions, JHEP, 01, 110 (2018) · Zbl 1384.83056 · doi:10.1007/JHEP01(2018)110
[31] Tanizaki, Y.; Ünsal, M., Center vortex and confinement in Yang-Mills theory and QCD with anomaly-preserving compactifications, PTEP, 2022, 04A108 (2022) · Zbl 1497.81094
[32] Tanizaki, Y.; Ünsal, M., Semiclassics with ’t Hooft flux background for QCD with 2-index quarks, JHEP, 08, 038 (2022) · Zbl 1522.81735 · doi:10.1007/JHEP08(2022)038
[33] Yamazaki, M.; Yonekura, K., From 4d Yang-Mills to 2d ℂℙ^N−1model: IR problem and confinement at weak coupling, JHEP, 07, 088 (2017) · Zbl 1380.81224 · doi:10.1007/JHEP07(2017)088
[34] Tanizaki, Y.; Misumi, T.; Sakai, N., Circle compactification and ’t Hooft anomaly, JHEP, 12, 056 (2017) · Zbl 1383.83192 · doi:10.1007/JHEP12(2017)056
[35] Y. Tanizaki, Y. Kikuchi, T. Misumi and N. Sakai, Anomaly matching for the phase diagram of massless ℤ_N-QCD, Phys. Rev. D97 (2018) 054012 [arXiv:1711.10487] [INSPIRE].
[36] Yamazaki, M., Relating ’t Hooft Anomalies of 4d Pure Yang-Mills and 2d ℂℙ^N−1Model, JHEP, 10, 172 (2018) · Zbl 1402.83102 · doi:10.1007/JHEP10(2018)172
[37] Cox, AA; Poppitz, E.; Wandler, FD, The mixed 0-form/1-form anomaly in Hilbert space: pouring the new wine into old bottles, JHEP, 10, 069 (2021) · Zbl 1476.83154 · doi:10.1007/JHEP10(2021)069
[38] H. Fukaya and T. Onogi, Lattice study of the massive Schwinger model with theta term under Lüscher’s ‘admissibility’ condition, Phys. Rev. D68 (2003) 074503 [hep-lat/0305004] [INSPIRE].
[39] T. Banks, L. Susskind and J.B. Kogut, Strong Coupling Calculations of Lattice Gauge Theories: (1 + 1)-Dimensional Exercises, Phys. Rev. D13 (1976) 1043 [INSPIRE].
[40] A. Carroll, J.B. Kogut, D.K. Sinclair and L. Susskind, Lattice Gauge Theory Calculations in (1 + 1)-Dimensions and the Approach to the Continuum Limit, Phys. Rev. D13 (1976) 2270 [Erratum ibid.14 (1976) 1729] [INSPIRE].
[41] C.J. Hamer, W.-h. Zheng and J. Oitmaa, Series expansions for the massive Schwinger model in Hamiltonian lattice theory, Phys. Rev. D56 (1997) 55 [hep-lat/9701015] [INSPIRE].
[42] Bañuls, MC; Cichy, K.; Jansen, K.; Cirac, JI, The mass spectrum of the Schwinger model with Matrix Product States, JHEP, 11, 158 (2013) · doi:10.1007/JHEP11(2013)158
[43] E. Rico, T. Pichler, M. Dalmonte, P. Zoller and S. Montangero, Tensor networks for Lattice Gauge Theories and Atomic Quantum Simulation, Phys. Rev. Lett.112 (2014) 201601 [arXiv:1312.3127] [INSPIRE].
[44] M.C. Bañuls, K. Cichy, K. Jansen and H. Saito, Chiral condensate in the Schwinger model with Matrix Product Operators, Phys. Rev. D93 (2016) 094512 [arXiv:1603.05002] [INSPIRE].
[45] B. Buyens, J. Haegeman, F. Hebenstreit, F. Verstraete and K. Van Acoleyen, Real-time simulation of the Schwinger effect with Matrix Product States, Phys. Rev. D96 (2017) 114501 [arXiv:1612.00739] [INSPIRE].
[46] L. Funcke, K. Jansen and S. Kühn, Topological vacuum structure of the Schwinger model with matrix product states, Phys. Rev. D101 (2020) 054507 [arXiv:1908.00551] [INSPIRE].
[47] B. Chakraborty, M. Honda, T. Izubuchi, Y. Kikuchi and A. Tomiya, Classically emulated digital quantum simulation of the Schwinger model with a topological term via adiabatic state preparation, Phys. Rev. D105 (2022) 094503 [arXiv:2001.00485] [INSPIRE].
[48] M. Honda, E. Itou, Y. Kikuchi, L. Nagano and T. Okuda, Classically emulated digital quantum simulation for screening and confinement in the Schwinger model with a topological term, Phys. Rev. D105 (2022) 014504 [arXiv:2105.03276] [INSPIRE].
[49] M. Honda, E. Itou, Y. Kikuchi and Y. Tanizaki, Negative string tension of a higher-charge Schwinger model via digital quantum simulation, PTEP2022 (2022) 033B01 [arXiv:2110.14105] [INSPIRE]. · Zbl 1487.81148
[50] Y. Shimizu and Y. Kuramashi, Grassmann tensor renormalization group approach to one-flavor lattice Schwinger model, Phys. Rev. D90 (2014) 014508 [arXiv:1403.0642] [INSPIRE].
[51] Y. Shimizu and Y. Kuramashi, Critical behavior of the lattice Schwinger model with a topological term at θ = π using the Grassmann tensor renormalization group, Phys. Rev. D90 (2014) 074503 [arXiv:1408.0897] [INSPIRE].
[52] Gattringer, C.; Göschl, D.; Sulejmanpasic, T., Dual simulation of the 2d U(1) gauge Higgs model at topological angle θ = π : Critical endpoint behavior, Nucl. Phys. B, 935, 344 (2018) · Zbl 1398.81299 · doi:10.1016/j.nuclphysb.2018.08.017
[53] T. Sulejmanpasic and C. Gattringer, Abelian gauge theories on the lattice: θ-Terms and compact gauge theory with(out) monopoles, Nucl. Phys. B943 (2019) 114616 [arXiv:1901.02637] [INSPIRE]. · Zbl 1415.81050
[54] J.B. Kogut and L. Susskind, Hamiltonian Formulation of Wilson’s Lattice Gauge Theories, Phys. Rev. D11 (1975) 395 [INSPIRE].
[55] M. Fishman, S.R. White and E.M. Stoudenmire, The ITensor software library for tensor network calculations, arXiv:2007.14822.
[56] Tanizaki, Y.; Ünsal, M., Modified instanton sum in QCD and higher-groups, JHEP, 03, 123 (2020) · Zbl 1435.83187 · doi:10.1007/JHEP03(2020)123
[57] Komargodski, Z.; Ohmori, K.; Roumpedakis, K.; Seifnashri, S., Symmetries and strings of adjoint QCD_2, JHEP, 03, 103 (2021) · Zbl 1461.81143 · doi:10.1007/JHEP03(2021)103
[58] A. Cherman and T. Jacobson, Lifetimes of near eternal false vacua, Phys. Rev. D103 (2021) 105012 [arXiv:2012.10555] [INSPIRE].
[59] K. Fujikawa, Path Integral Measure for Gauge Invariant Fermion Theories, Phys. Rev. Lett.42 (1979) 1195 [INSPIRE].
[60] R. Dempsey, I.R. Klebanov, S.S. Pufu and B. Zan, Discrete Chiral Symmetry and Mass Shift in Lattice Hamiltonian Approach to Schwinger Model, arXiv:2206.05308 [INSPIRE].
[61] Jordan, P.; Wigner, EP, About the Pauli exclusion principle, Z. Phys., 47, 631 (1928) · JFM 54.0983.03 · doi:10.1007/BF01331938
[62] Eisert, J.; Cramer, M.; Plenio, MB, Area laws for the entanglement entropy — a review, Rev. Mod. Phys., 82, 277 (2010) · Zbl 1205.81035 · doi:10.1103/RevModPhys.82.277
[63] T. Okuda, Schwinger model on an interval: analytic results and DMRG, arXiv:2210.00297 [INSPIRE].
[64] Gross, DJ; Klebanov, IR; Matytsin, AV; Smilga, AV, Screening versus confinement in (1+1)-dimensions, Nucl. Phys. B, 461, 109 (1996) · Zbl 1004.81518 · doi:10.1016/0550-3213(95)00655-9
[65] Dalley, S.; Klebanov, IR, String spectrum of (1 + 1)-dimensional large N QCD with adjoint matter, Phys. Rev. D, 47, 2517 (1993) · doi:10.1103/PhysRevD.47.2517
[66] Bhanot, G.; Demeterfi, K.; Klebanov, IR, (1 + 1)-dimensional large N QCD coupled to adjoint fermions, Phys. Rev. D, 48, 4980 (1993) · doi:10.1103/PhysRevD.48.4980
[67] Cherman, A.; Jacobson, T.; Tanizaki, Y.; Ünsal, M., Anomalies, a mod 2 index, and dynamics of 2d adjoint QCD, SciPost Phys., 8, 072 (2020) · doi:10.21468/SciPostPhys.8.5.072
[68] Bhardwaj, L.; Tachikawa, Y., On finite symmetries and their gauging in two dimensions, JHEP, 03, 189 (2018) · Zbl 1388.81707 · doi:10.1007/JHEP03(2018)189
[69] Chang, C-M; Lin, Y-H; Shao, S-H; Wang, Y.; Yin, X., Topological Defect Lines and Renormalization Group Flows in Two Dimensions, JHEP, 01, 026 (2019) · Zbl 1409.81134 · doi:10.1007/JHEP01(2019)026
[70] R. Thorngren and Y. Wang, Fusion Category Symmetry I: Anomaly In-Flow and Gapped Phases, arXiv:1912.02817 [INSPIRE].
[71] Hamer, CJ; Kogut, JB; Crewther, DP; Mazzolini, MM, The Massive Schwinger Model on a Lattice: Background Field, Chiral Symmetry and the String Tension, Nucl. Phys. B, 208, 413 (1982) · doi:10.1016/0550-3213(82)90229-2
[72] Schiller, A.; Ranft, J., The Massive Schwinger Model on the Lattice Studied via a Local Hamiltonian Monte Carlo Method, Nucl. Phys. B, 225, 204 (1983) · doi:10.1016/0550-3213(83)90049-4
[73] T. Byrnes, P. Sriganesh, R.J. Bursill and C.J. Hamer, Density matrix renormalization group approach to the massive Schwinger model, Nucl. Phys. B Proc. Suppl.109 (2002) 202 [hep-lat/0201007] [INSPIRE]. · Zbl 0997.81062
[74] Lieb, EH; Schultz, T.; Mattis, D., Two soluble models of an antiferromagnetic chain, Annals Phys., 16, 407 (1961) · Zbl 0129.46401 · doi:10.1016/0003-4916(61)90115-4
[75] I. Affleck and E.H. Lieb, A Proof of Part of Haldane’s Conjecture on Spin Chains, Lett. Math. Phys.12 (1986) 57 [INSPIRE].
[76] M. Oshikawa, Commensurability, excitation gap and topology in quantum many-particle systems on a periodic lattice, Phys. Rev. Lett.84 (2000) 1535 [cond-mat/9911137].
[77] M.B. Hastings, Lieb-Schultz-Mattis in higher dimensions, Phys. Rev. B69 (2004) 104431 [cond-mat/0305505] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.