×

Particle number conservation and block structures in matrix product states. (English) Zbl 1490.81099

Summary: The eigenvectors of the particle number operator in second quantization are characterized by the block sparsity of their matrix product state representations. This is shown to generalize to other classes of operators. Imposing block sparsity yields a scheme for conserving the particle number that is commonly used in applications in physics. Operations on such block structures, their rank truncation, and implications for numerical algorithms are discussed. Explicit and rank-reduced matrix product operator representations of one- and two-particle operators are constructed that operate only on the non-zero blocks of matrix product states.

MSC:

81S08 Canonical quantization
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
81R15 Operator algebra methods applied to problems in quantum theory

References:

[1] Absil, P-A; Mahony, R.; Sepulchre, R., Optimization algorithms on matrix manifolds (2008), Princeton: Princeton University Press, Princeton · Zbl 1147.65043 · doi:10.1515/9781400830244
[2] Bachmayr, M.; Cohen, A.; Dahmen, W., Parametric PDEs: Sparse or low-rank approximations?, IMA J. Numer. Anal., 38, 1661-1708 (2018) · Zbl 1477.65189 · doi:10.1093/imanum/drx052
[3] Bachmayr, M.; Kazeev, V., Stability of low-rank tensor representations and structured multilevel preconditioning for elliptic PDEs, Found. Comput. Math., 20, 1175-1236 (2020) · Zbl 1454.65160 · doi:10.1007/s10208-020-09446-z
[4] Bachmayr, M.; Schneider, R.; Uschmajew, A., Tensor networks and hierarchical tensors for the solution of high-dimensional partial differential equations, Found. Comput. Math., 16, 6, 1423-1472 (2016) · Zbl 1357.65153 · doi:10.1007/s10208-016-9317-9
[5] Bauer, B.; Corboz, P.; Orús, R.; Troyer, M., Implementing global Abelian symmetries in projected entangled-pair state algorithms, Phys. Rev. B., 83, 12, 125106 (2011) · doi:10.1103/PhysRevB.83.125106
[6] Chan, GK-L; Keselman, A.; Nakatani, N.; Li, Z.; White, SR, Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms, J. Chem. Phys., 145, 1, 014102 (2016) · doi:10.1063/1.4955108
[7] Crosswhite, GM; Bacon, D., Finite automata for caching in matrix product algorithms, Phys. Rev. A., 78, 1, 012356 (2008) · doi:10.1103/PhysRevA.78.012356
[8] Daley, AJ; Kollath, C.; Schollwöck, U.; Vidal, G., Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces, J. Stat. Mech. Theory Exp., 2004, 4, P04005 (2004) · Zbl 1075.82015 · doi:10.1088/1742-5468/2004/04/P04005
[9] Dolfi, M.; Bauer, B.; Troyer, M.; Ristivojevic, Z., Multigrid algorithms for tensor network states, Phys. Rev. Lett., 109, 2, 020604 (2012) · doi:10.1103/PhysRevLett.109.020604
[10] Dolgov, S., Kalise, D., Kunisch, K.: Tensor decompositions for high-dimensional Hamilton-Jacobi-Bellman equations, 24 · Zbl 1471.65184
[11] Dolgov, S.; Khoromskij, B., Two-level QTT-Tucker format for optimized tensor calculus, SIAM J. Matrix Anal. Appl., 34, 2, 593-623 (2013) · Zbl 1273.65169 · doi:10.1137/120882597
[12] Eigel, M.; Pfeffer, M.; Schneider, R., Adaptive stochastic Galerkin FEM with hierarchical tensor representations, Numer. Math., 136, 3, 765-803 (2017) · Zbl 1397.65262 · doi:10.1007/s00211-016-0850-x
[13] Fishman, M., White, S.R., Stoudenmire, E.M.: The ITensor software library for tensor network calculations, arXiv:2007.14822, (2020)
[14] Grasedyck, L., Hierarchical singular value decomposition of tensors, SIAM J. Matrix Anal. Appl., 31, 4, 2029-2054 (2010) · Zbl 1210.65090 · doi:10.1137/090764189
[15] Hackbusch, W.: On the representation of symmetric and antisymmetric tensors, Contemporary Computational Mathematics-A Celebration of the 80th Birthday of Ian Sloan, Springer, pp. 483-515 (2018) · Zbl 1405.15034
[16] Hackbusch, W.; Kühn, S., A new scheme for the tensor representation, J. Fourier Anal. Appl., 15, 5, 706-722 (2009) · Zbl 1188.15022 · doi:10.1007/s00041-009-9094-9
[17] Hauschild, J., Pollmann, F.: Efficient numerical simulations with tensor networks: Tensor network python (tenpy), SciPost Physics Lecture Notes (2018)
[18] Helgaker, T., Jorgensen, P.: and Jeppe Olsen. John Wiley & Sons, Molecular electronic-structure theory (2000)
[19] Holtz, S.; Rohwedder, T.; Schneider, R., The alternating linear scheme for tensor optimization in the tensor train format, SIAM J. Sci. Comput., 34, 2, A683-A713 (2012) · Zbl 1252.15031 · doi:10.1137/100818893
[20] Holtz, S.; Rohwedder, T.; Schneider, R., On manifolds of tensors of fixed TT-rank, Numer. Math., 120, 4, 701-731 (2012) · Zbl 1242.15022 · doi:10.1007/s00211-011-0419-7
[21] Kazeev, V.; Reichmann, O.; Schwab, C., Low-rank tensor structure of linear diffusion operators in the TT and QTT formats, Linear Algebra Appl., 438, 11, 4204-4221 (2013) · Zbl 1281.15024 · doi:10.1016/j.laa.2013.01.009
[22] Kazeev, VA; Khoromskij, BN, Low-Rank Explicit QTT Representation of the Laplace Operator and Its Inverse, SIAM J. Matrix Anal. Appl., 33, 3, 742-758 (2012) · Zbl 1268.15025 · doi:10.1137/100820479
[23] Keller, S., Dolfi, M., Troyer, M., Reiher, M.: An efficient matrix product operator representation of the quantum chemical hamiltonian. J. Chem. Phys. 143(24),(2015)
[24] Kressner, D.; Steinlechner, M.; Vandereycken, B., Low-rank tensor completion by Riemannian optimization, BIT Numer. Math., 54, 2, 447-468 (2014) · Zbl 1300.65040 · doi:10.1007/s10543-013-0455-z
[25] Kressner, D.; Tobler, C., Preconditioned low-rank methods for high-dimensional elliptic pde eigenvalue problems, Comput. Methods Appl. Math., 11, 3, 363-381 (2011) · Zbl 1283.65025 · doi:10.2478/cmam-2011-0020
[26] McCulloch, IP, From density-matrix renormalization group to matrix product states, J. Stat. Mech. Theory Exp., 2007, 10, P10014 (2007) · doi:10.1088/1742-5468/2007/10/P10014
[27] Mendl, CB, Pytenet: A concise python implementation of quantum tensor network algorithms, J. Open Sour. Softw., 3, 30, 948 (2018) · doi:10.21105/joss.00948
[28] Ivan, V., Oseledets, Tensor Train decomposition, SIAM J. Sci. Comput., 33, 5, 2295-2317 (2011) · Zbl 1232.15018 · doi:10.1137/090752286
[29] Oster, M., Sallandt, L., Schneider, R.: Approximating the stationary Hamilton-Jacobi-Bellman equation by hierarchical tensor products, arXiv:1911.00279, (2020)
[30] Östlund, S.; Rommer, S., Thermodynamic limit of density matrix renormalization, Phys. Rev. Lett., 75, 19, 3537 (1995) · doi:10.1103/PhysRevLett.75.3537
[31] Roberts, C., Milsted, A., Ganahl, M., Zalcman, A., Fontaine, B., Zou, Y., Hidary, J., Vidal, G., Leichenauer, S.: Tensornetwork: A library for physics and machine learning, arXiv:1905.01330, (2019)
[32] Rohwedder, T.; Schneider, R.; Zeiser, A., Perturbed preconditioned inverse iteration for operator eigenvalue problems with applications to adaptive wavelet discretization, Adv. Comput. Math., 34, 1, 43-66 (2011) · Zbl 1208.65160 · doi:10.1007/s10444-009-9141-8
[33] Schollwöck, U., The density-matrix renormalization group in the age of matrix product states, Ann. Phys., 326, 1, 96-192 (2011) · Zbl 1213.81178 · doi:10.1016/j.aop.2010.09.012
[34] Singh, S.; Pfeifer, RNC; Vidal, G., Tensor network states and algorithms in the presence of a global \(U(1)\) symmetry, Phys. Rev. B., 83, 115125 (2011) · doi:10.1103/PhysRevB.83.115125
[35] Steinlechner, M., Riemannian optimization for high-dimensional tensor completion, SIAM J. Sci. Comput., 38, 5, S461-S484 (2016) · Zbl 1352.65129 · doi:10.1137/15M1010506
[36] Szalay, S.; Pfeffer, M.; Murg, V.; Barcza, G.; Verstraete, F.; Schneider, R.; Legeza, Ö., Tensor product methods and entanglement optimization for ab initio quantum chemistry, Int. J. Quantum Chem., 115, 19, 1342-1391 (2015) · doi:10.1002/qua.24898
[37] Verstraete, F., Cirac, J.I.: Renormalization algorithms for quantum-many body systems in two and higher dimensions, arXiv: cond-mat/0407066, (2004)
[38] Vidal, G., Efficient classical simulation of slightly entangled quantum computations, Phys. Rev. Lett., 91, 14, 147902 (2003) · doi:10.1103/PhysRevLett.91.147902
[39] Vidal, G., Entanglement renormalization, Phys. Rev. Lett., 99 (2007) · doi:10.1103/PhysRevLett.99.220405
[40] Steven, R., White, Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett., 69, 2863-2866 (1992) · doi:10.1103/PhysRevLett.69.2863
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.