×

Inconsistencies in numerical simulations of dynamical systems using interval arithmetic. (English) Zbl 1476.37093

Summary: Over the past few decades, interval arithmetic has been attracting widespread interest from the scientific community. With the expansion of computing power, scientific computing is encountering a noteworthy shift from floating-point arithmetic toward increased use of interval arithmetic. Notwithstanding the significant reliability of interval arithmetic, this paper presents a theoretical inconsistency in a simulation of dynamical systems using a well-known implementation of arithmetic interval. We have observed that two natural interval extensions present an empty intersection during a finite time range, which is contrary to the fundamental theorem of interval analysis. We have proposed a procedure to at least partially overcome this problem, based on the union of the two generated pseudo-orbits. This paper also shows a successful case of interval arithmetic application in the reduction of interval width size on the simulation of discrete map. The implications of our findings on the reliability of scientific computing using interval arithmetic have been properly addressed using two numerical examples.

MSC:

37M05 Simulation of dynamical systems
37C50 Approximate trajectories (pseudotrajectories, shadowing, etc.) in smooth dynamics

Software:

INTLAB; C-XSC 2.0; CoStLy
Full Text: DOI

References:

[1] Bruguera, J. D. [2014] “ Optimizing the representation of intervals,” Sci. Comput. Program.90, 21-33.
[2] Chalco-Cano, Y., Lodwick, W. & Bede, B. [2014] “ Single level constraint interval arithmetic,” Fuzzy Sets Syst.257, 146-168. · Zbl 1336.65077
[3] [2018] “ Big data needs a hardware revolution,” Nature554, 145-146.
[4] Feigenbaum, M. J. [1978] “ Quantitative universality for a class of nonlinear transformations,” J. Statist. Phys.19, 25-52. · Zbl 0509.58037
[5] Galias, Z. [2002] “ Proving the existence of long periodic orbits in 1D maps using interval Newton method and backward shooting,” Topol. Appl.124, 25-37. · Zbl 1009.37027
[6] Galias, Z. [2013] “The dangers of rounding errors for simulations and analysis of nonlinear circuits and systems — And how to avoid them,” IEEE Circuits Syst. Mag.13, 35-52.
[7] Hammel, S. M., Yorke, J. A. & Grebogi, C. [1987] “ Do numerical orbits of chaotic dynamical processes represent true orbits?” J. Compl.3, 136-145. · Zbl 0639.65037
[8] Hargreaves, G. I. [2002] “ Interval analysis in Matlab,” Analysis416, 1-49.
[9] Hofschuster, W. & Krämer, W. [2004] “ C-XSC 2.0 A \(C<mml:math display=''inline`` overflow=''scroll``> <mml:mo stretchy=''false`` class=''MathClass-bin``>+\) Library for extended scientific computing,” Numerical Software with Result Verification, eds. Alt, R., Frommer, A., Kearfott, R. B. & Luther, W. (Springer, Berlin, Heidelberg), pp. 15-35. · Zbl 1126.65328
[10] Kulisch, U. W. [2009] “ Complete interval arithmetic and its implementation on the computer,” Numerical Validation, , Vol. 5492 (Springer, Berlin, Heidelberg), pp. 7-26.
[11] Ling, B. W.-K., Ho, C. Y.-F. & Tam, P.-K. S. [2006] “ Nonlinear behaviors of first- and second-order complex digital filters with two’s complement arithmetic,” IEEE Trans. Sign. Process.54, 4052-4055. · Zbl 1374.94546
[12] Lohner, R. J. [1993] “ Interval arithmetic in staggered correction format,” Scientific Computing with Automatic Result Verification, eds. Adams, E. & Kulisch, U. (Elsevier), pp. 301-321. · Zbl 0773.00004
[13] Lozi, R. [2013] “ Can we trust in numerical computations of chaotic solutions of dynamical systems?” Topology and Dynamics of Chaos, , Vol. 84 (World Scientific), pp. 63-98. · Zbl 1270.37007
[14] Macau, E. E. N. & Pando Lambruschini, C. L. [2014] “ Advanced computational and experimental techniques in nonlinear dynamics,” Eur. Phys. J. Special Topics223, 2645-2648.
[15] May, R. M. [1976] “ Simple mathematical models with very complicated dynamics,” Nature261, 459-467. · Zbl 1369.37088
[16] Mendes, E. M. A. M. & Nepomuceno, E. G. [2016] “ A very simple method to calculate the (positive) largest Lyapunov exponent using interval extensions,” Int. J. Bifurcation and Chaos26, 1650226-1-7. · Zbl 1354.37082
[17] Moore, R. E. & Moore, R. E. [1979] Methods and Applications of Interval Analysis, , Vol. 2 (SIAM). · Zbl 0417.65022
[18] Moore, R. E., Kearfott, R. B. & Cloud, M. J. [2009] Introduction to Interval Analysis (SIAM). · Zbl 1168.65002
[19] Neher, M. & Eble, I. [2004] “ Costly: A validated library for complex functions,” Proc. Appl. Math. Mech.4, 594-595. · Zbl 1354.30001
[20] Nepomuceno, E. G. [2014] “ Convergence of recursive functions on computers,” J. Engin., 1-3.
[21] Nepomuceno, E. G. & Martins, S. A. M. [2016] “ A lower bound error for free-run simulation of the polynomial NARMAX,” Syst. Sci. Contr. Engin.4, 50-58.
[22] Nepomuceno, E. G. & Mendes, E. M. [2017] “ On the analysis of pseudo-orbits of continuous chaotic nonlinear systems simulated using discretization schemes in a digital computer,” Chaos Solit. Fract.95, 21-32. · Zbl 1373.34074
[23] Nepomuceno, E., Martins, S., Amaral, G. & Riveret, R. [2017] “ On the lower bound error for discrete maps using associative property,” Syst. Sci. Contr. Engin.5, 462-473.
[24] Piegat, A. & Landowski, M. [2015] “ Is the conventional interval arithmetic correct?” J. Theoret. Appl. Comput. Sci.6, 27-44.
[25] Piegat, A. & Landowski, M. [2017] “ Is an interval the right result of arithmetic operations on intervals?” Int. J. Appl. Math. Comput. Sci.27. · Zbl 1422.65072
[26] Rothwell, E. J. & Cloud, M. J. [2012] “ Automatic error analysis using intervals,” IEEE Trans. Education55, 9-15.
[27] Rump, S. [1999] “ INTLAB — INTerval LABoratory,” Developments in Reliable Computing, ed. Csendes, T. (Kluwer Academic Publishers, Dordrecht), pp. 77-104. · Zbl 0949.65046
[28] Saberi Nik, H. [2015] “ Finite-time chaos control for a chaotic complex-variable system,” J. Contr. Autom. Electr. Syst.26, 371-379.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.