×

New aspects of the CISAMR algorithm for meshing domain geometries with sharp edges and corners. (English) Zbl 1539.74463

Summary: Several new algorithmic aspects of the conforming to interface structured adaptive mesh refinement (CISMAR) mesh generation technique are presented for creating high-fidelity finite element models of 3D problems with non-smooth (\(C^0\)-continuous) geometries. The Stereolithography (STL) file characterizing the domain geometry is first pre-processed to identify its sharp edges and corners, followed by overlaying that on a structured background mesh composed of tetrahedral elements to identify elements cuts by material interfaces/boundaries. Three non-iterative algorithms, namely hierarchical \(r\)-adaptivity, element deletion, and Kirigami-inspired sub-tetrahedralization are then introduced to generate a high-quality conforming mesh by relocating background mesh nodes, eliminating degenerate elements, and subdividing non-conforming tetrahedra to match material interfaces and domain boundaries. These algorithms either upgrade or fully replace different phases of the original CISAMR technique, which was limited to modeling problems with smooth interfaces. The example problems provided in this manuscript demonstrate the upgraded CISAMR algorithm to handle domain geometries with complex, non-smooth interfaces.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Zienkiewicz, O.; Taylor, R.; Zhu, J., The Finite Element Method: Its Basis and Fundamentals (2005), Elsevier
[2] Zienkiewicz, O.; Taylor, R., The Finite Element Method for Solid and Structural Mechanics (2005), Elsevier · Zbl 1084.74001
[3] Young, P.; Beresford-West, T.; Coward, S.; Notarberardino, B.; Walker, B.; Abdul-Aziz, A., An efficient approach to converting three-dimensional image data into highly accurate computational models, Phil. Trans. R. Soc. A, 366, 1878, 3155-3173 (2008)
[4] Shewchuk, J., What is a good linear finite element? interpolation, conditioning, anisotropy, and quality measures (preprint), Univ. Calif. Berkeley, 2002 (2002)
[5] T. Baker, Deformation and quality measures for tetrahedral meshes, in: European Congress on Computational Methods in Applied Siences and Engineering, Barcelone, Vol. 15, 2000.
[6] Si, H., Constrained delaunay tetrahedral mesh generation and refinement, Finite Elem. Anal. Des., 46, 1-2, 33-46 (2010)
[7] Geuzaine, C.; Remacle, J., Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities, Internat. J. Numer. Methods Engrg., 79, 11, 1309-1331 (2009) · Zbl 1176.74181
[8] Shewchuk, J., Delaunay refinement algorithms for triangular mesh generation, Comput. Geom., 22, 1-3, 21-74 (2002) · Zbl 1016.68139
[9] Golias, N.; Dutton, R., Delaunay triangulation and 3D adaptive mesh generation, Finite Elem. Anal. Des., 25, 3-4, 331-341 (1997) · Zbl 0916.73051
[10] Watson, D., Computing the n-dimensional delaunay tessellation with application to voronoi polytopes, Comput. J., 24, 2, 167-172 (1981)
[11] Fang, T.; Piegl, L., Delaunay triangulation in three dimensions, IEEE Comput. Graph. Appl., 15, 5, 62-69 (1995)
[12] Schöberl, J., NETGEN an advancing front 2D/3D-mesh generator based on abstract rules, Comput. Vis. Sci., 1, 1, 41-52 (1997) · Zbl 0883.68130
[13] Möller, P.; Hansbo, P., On advancing front mesh generation in three dimensions, Internat. J. Numer. Methods Engrg., 38, 21, 3551-3569 (1995) · Zbl 0835.73093
[14] Lohner, R., Three-dimensional grid generation by the advancing front method, Int. J. Numer. Meths. Fluids., 8, 1135-1149 (1988) · Zbl 0668.76035
[15] Yerry, M.; Shephard, M., Automatic three-dimensional mesh generation by the modified-octree technique, Internat. J. Numer. Methods Engrg., 20, 11, 1965-1990 (1984) · Zbl 0547.65077
[16] Shephard, M.; Georges, M., Automatic three-dimensional mesh generation by the finite octree technique, Internat. J. Numer. Methods Engrg., 32, 4, 709-749 (1991) · Zbl 0755.65116
[17] Shewchuk, J., Constrained delaunay tetrahedralizations and provably good boundary recovery., (IMR (2002), Citeseer), 193-204
[18] Sloan, S., A fast algorithm for generating constrained delaunay triangulations, Comput. Struct., 47, 3, 441-450 (1993) · Zbl 0808.65149
[19] Lo, S., A new mesh generation scheme for arbitrary planar domains, Internat. J. Numer. Methods Engrg., 21, 8, 1403-1426 (1985) · Zbl 0587.65081
[20] Lo, S., Volume discretization into tetrahedra-II. 3D triangulation by advancing front approach, Comput. Struct., 39, 5, 501-511 (1991) · Zbl 0764.65073
[21] Shephard, M.; Yerry, M., A modified quadtree approach to finite element mesh generation, IEEE Comput. Graph. Appl., 3, 1, 39-46 (1983)
[22] Lorensen, W. E.; Cline, H. E., Marching cubes: A high resolution 3D surface construction algorithm, Comput. Graph., 21, 4, 163-169 (1987)
[23] Zhang, Y.; Hughes, T.; Bajaj, C., An automatic 3D mesh generation method for domains with multiple materials, Comput. Methods Appl. Mech. Engrg., 199, 5, 405-415 (2010) · Zbl 1227.74129
[24] Liang, X. H.; Zhang, Y. J., An octree-based dual contouring method for triangular and tetrahedral mesh generation with guaranteed angle range, Eng. Comput., 30, 2, 211-222 (2014)
[25] Zhang, Y.; Bajaj, C., Adaptive and quality quadrilateral/hexahedral meshing from volumetric data, Comput. Methods Appl. Mech. Engrg., 195, 9, 942-960 (2006) · Zbl 1119.65013
[26] Gawlik, E.; Lew, A., Unified analysis of finite element methods for problems with moving boundaries, SIAM J. Numer. Anal., 53, 6, 2822-2846 (2015) · Zbl 1330.65140
[27] Gawlik, E.; Kabaria, H.; Lew, A., High-order methods for low Reynolds number flows around moving obstacles based on universal meshes, Internat. J. Numer. Methods Engrg., 104, 7, 513-538 (2015) · Zbl 1352.76052
[28] Gawlik, E.; Lew, A., High-order finite element methods for moving boundary problems with prescribed boundary evolution, Comput. Methods Appl. Mech. Engrg., 278, 314-346 (2014) · Zbl 1423.76233
[29] Knupp, P., A method for hexahedral mesh shape optimization, Internat. J. Numer. Methods Engrg., 58, 2, 319-332 (2003) · Zbl 1035.65020
[30] Freitag, L.; Knupp, P., Tetrahedral Element Shape Optimization Via the Jacobian Determinant and Condition NumberTech. rep. (1999), Sandia National Lab.(SNL-NM), Albuquerque, NM (United States); Sandia
[31] Knupp, P., Algebraic mesh quality metrics for unstructured initial meshes, Finite Elem. Anal. Des., 39, 3, 217-241 (2003) · Zbl 1213.74292
[32] Owen, S., A survey of unstructured mesh generation technology, (IMR, Vol. 239 (1998), Citeseer), 267
[33] Field, D., Laplacian smoothing and delaunay triangulations, Commun. Appl. Numer. Methods, 4, 6, 709-712 (1988) · Zbl 0664.65107
[34] Ji, Z.; Liu, L.; Wang, G., A global laplacian smoothing approach with feature preservation, (Ninth International Conference on Computer Aided Design and Computer Graphics. Ninth International Conference on Computer Aided Design and Computer Graphics, CAD-CG’05 (2005), IEEE), 6-pp
[35] Canann, S.; Tristano, J.; Staten, M., An approach to combined Laplacian and optimization-based smoothing for triangular, quadrilateral, and quad-dominant meshes, (IMR, Vol. 1, 1 (1998), Citeseer), 479-494
[36] Freitag, L., On Combining Laplacian and Optimization-Based Mesh Smoothing Techniques (1997), Argonne National Lab.(ANL), Argonne, IL (United States)
[37] Freitag, L.; Ollivier-Gooch, C., Tetrahedral mesh improvement using swapping and smoothing, Internat. J. Numer. Methods Engrg., 40, 21, 3979-4002 (1997) · Zbl 0897.65075
[38] Zhang, Y.; Bajaj, C.; Sohn, B., 3D finite element meshing from imaging data, Comput. Methods Appl. Mech. Engrg., 194, 48-49, 5083-5106 (2005) · Zbl 1093.65019
[39] Rivara, M., New longest-edge algorithms for the refinement and/or improvement of unstructured triangulations, Internat. J. Numer. Methods Engrg., 40, 18, 3313-3324 (1997) · Zbl 0980.65144
[40] Soghrati, S.; Nagarajan, A.; Liang, B., Conforming to interface structured adaptive mesh refinement technique for modeling heterogeneous materials, Comput. Mech., 125, 24-40 (2017)
[41] Nagarajan, A.; Soghrati, S., Conforming to interface structured adaptive mesh refinement: 3D algorithm and implementation, Comput. Mech., 62, 5, 1213-1238 (2018) · Zbl 1471.74071
[42] Baden, S., Structured Adaptive Mesh Refinement (SAMR) Grid Methods, Vol. 117 (2000), Springer Science & Business Media
[43] Saksono, P.; Dettmer, W.; Peric, D., An adaptive remeshing strategy for flows with moving boundaries and fluid-structure interaction, Internat. J. Numer. Methods Engrg., 71, 9, 1009-1050 (2007) · Zbl 1194.76140
[44] Piggott, M.; Pain, C.; Gorman, G.; Power, P.; Goddard, A., h, r, and hr adaptivity with applications in numerical ocean modelling, Ocean Model., 10, 1, 95-113 (2005)
[45] Zhang, P.; Yang, M.; Zeng, D.; Soghrati, S., Integrated computational framework for modeling chopped fiber composites at the mesoscale, Comput. Methods Appl. Mech. Engrg., 395, Article 115001 pp. (2022) · Zbl 1507.74261
[46] Liang, B.; Cuadra, J.; Hazeli, K.; Soghrati, S., Stress field analysis in a stony meteorite under thermal fatigue and mechanical loadings, Icarus, 335, Article 113381 pp. (2020)
[47] Liang, B.; Nagarajan, A.; Ahmadian, H.; Soghrati, S., Analyzing effects of surface roughness, voids, and particle-matrix interfacial bonding on the failure response of a heterogeneous adhesive, Comput. Methods Appl. Mech. Engrg., 346, 410-439 (2019) · Zbl 1440.74257
[48] Mohmadsalehi, M.; Soghrati, S., An automated mesh generation algorithm for simulating complex crack growth problems, Comput. Methods Appl. Mech. Engrg., 398, Article 115015 pp. (2022) · Zbl 1507.74497
[49] Soghrati, S.; Xiao, F.; Nagarajan, A., A conforming to interface structured adaptive mesh refinement technique for modeling fracture problems, Comput. Mech., 59, 4, 667-684 (2017)
[50] Soghrati, S.; Chen, Y.; Mai, W., A non-iterative local remeshing approach for simulating moving boundary transient diffusion problems, Finite Elem. Anal. Des., 140, 23-37 (2018)
[51] Liang, B.; Nagarajan, A.; Soghrati, S., Scalable parallel implementation of CISAMR: a non-iterative mesh generation algorithm, Comput. Mech., 64, 1, 173-195 (2019) · Zbl 1467.74086
[52] Piegl, L.; Tiller, W., The NURBS Book (2012), Springer Science & Business Media
[53] Aragón, A.; Yastrebov, V.; Molinari, J., A constrained-optimization methodology for the detection phase in contact mechanics simulations, Internat. J. Numer. Methods Engrg., 96, 5, 323-338 (2013) · Zbl 1352.74195
[54] https://www.printables.com/model/80618-ryobi-expand-it-hanger.
[55] https://cults3d.com/en/3d-model/tool/lever-lock-press-fit-key.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.