×

\(G^1\)-interpolation and geometry reconstruction for higher order finite elements. (English) Zbl 1157.65485

Summary: The paper proposes a new \(G^{1}\)-interpolation and geometry reconstruction scheme for regular surfaces approximated with unstructured quadrilateral grids. The parametrization is based on \(C^{1}\) transfinite interpolation and sixth order polynomials. The \(G^{1}\)-conforming approximation of surfaces guarantees continuity of surface normals and it is critical for higher order finite and boundary element discretizations on curvilinear domains. The proposed interpolation-reconstruction scheme is illustrated with a number of numerical examples including the geometry of human head.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

Software:

LBIE
Full Text: DOI

References:

[1] Arnold, D.; Awanou, G.; Winther, R., Finite elements for symmetric tensors in three dimensions, Math. Comput., 77, 1229-1251 (2008) · Zbl 1285.74013
[2] Boissonnat, J. D., Effective Computational Geometry for Curves and Surfaces (2007), Springer: Springer New York · Zbl 1165.65318
[3] Ciarlet, Ph. G., The Finite Element Methods for Elliptic Problems (1994), North Holland: North Holland New York
[4] R. Clough, J. Tocher, Finite element stiffness matrices for analysis of plates in bending, in: Conference on Matrix Methods in Structural Analysis, 1965.; R. Clough, J. Tocher, Finite element stiffness matrices for analysis of plates in bending, in: Conference on Matrix Methods in Structural Analysis, 1965.
[5] de Carmo, M. P., Differential Geometry of Curves and Surfaces (1976), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0326.53001
[6] L. Demkowicz, Computing with hp Finite Elements. I. One- and Two-Dimensional Elliptic and Maxwell Problems. Chapman & Hall/CRC Press, Taylor and Francis, October, 2006.; L. Demkowicz, Computing with hp Finite Elements. I. One- and Two-Dimensional Elliptic and Maxwell Problems. Chapman & Hall/CRC Press, Taylor and Francis, October, 2006.
[7] Demkowicz, L., Polynomial exact sequences and projection-based interpolation with applications to Maxwell equations, (Boffi, D.; Gastaldi, L., Mixed Finite Elements, Compatibility Conditions and Applications, vol. 1939 of Lecture Notes in Mathematics (2008), Springer-Verlag), 101-158, see also ICES Report 06-12 · Zbl 1143.78366
[8] Demkowicz, L.; Kurtz, J.; Pardo, D.; Paszyński, M.; Rachowicz, W.; Zdunek, A., Computing with hp Finite Elements. II. Frontiers: Three-Dimensional Elliptic and Maxwell Problems with Applications (2007), Chapman & Hall/CRC, October
[9] Düster, A.; Bröker, H.; Rank, E., The \(p\)-version of the finite element method for three-dimensional curved thin walled structures, Int. J. Numer. Methods Engrg., 52, 673-703 (2001) · Zbl 1058.74079
[10] Goodman, E., Handbook of Discrete and Computational Geometry (2004), Hoboken CRC Press · Zbl 1056.52001
[11] Gordon, W. J.; Hall, C. A., Transfinite element methods: blending function interpolation over arbitrary curved element domain, Numer. Math., 21, 109-129 (1973) · Zbl 0254.65072
[12] Királyfalvi, G.; Szabó, B. A., Quasi-regional mapping for the \(p\)-version of the finite element method, Finite Element Anal. Des., 27, 85-97 (1997) · Zbl 0916.73056
[13] Matringe, S. F.; Juanes, R.; Tchelepi, H. A., Streamline tracing on general triangular or quadrilateral grids, SPE J., 12, 217-223 (2007)
[14] J.T. Oden, K.R. Diller, C. Bajaj, J.C. Browne, J. Hazle, I. Babuska, J. Bass, L. Demkowicz, Y. Feng, D. Fuentes, S. Prudhomme, M.N. Rylander, R.J. Stafford, Y. Zhang, Development of a computational paradigm for laser treatment of cancer, in: International Conference on Computational Science, no. 3, 2006, pp. 530-537.; J.T. Oden, K.R. Diller, C. Bajaj, J.C. Browne, J. Hazle, I. Babuska, J. Bass, L. Demkowicz, Y. Feng, D. Fuentes, S. Prudhomme, M.N. Rylander, R.J. Stafford, Y. Zhang, Development of a computational paradigm for laser treatment of cancer, in: International Conference on Computational Science, no. 3, 2006, pp. 530-537. · Zbl 1114.92043
[15] Oden, J. T.; Diller, K. R.; Bajaj, C.; Browne, J. C.; Hazle, J.; Babuska, I.; Bass, J.; Demkowicz, L.; Feng, Y.; Fuentes, D.; Prudhomme, S.; Rylander, M. N.; Stafford, R. J.; Zhang, Y., Development of a computational paradigm for laser treatment of cancer, Lect. Notes Comput. Sci., 3993, 530-537 (2006)
[16] S. Owen, Meshing research corner. <http://www.andrew.cmu.edu/user/sowen/mesh.html>; S. Owen, Meshing research corner. <http://www.andrew.cmu.edu/user/sowen/mesh.html>
[17] S. Owen, A survey of unstructured mesh generation technology. <http://www.andrew.cmu.edu/user/sowen/survey>; S. Owen, A survey of unstructured mesh generation technology. <http://www.andrew.cmu.edu/user/sowen/survey>
[18] S.J. Owen, M.S. Shepherd, Special Issue on Trends in Unstructured Mesh Generation, Engineering With Computers, vol. 20, 2004.; S.J. Owen, M.S. Shepherd, Special Issue on Trends in Unstructured Mesh Generation, Engineering With Computers, vol. 20, 2004.
[19] Owen, S. J.; White, D. R., Mesh-based geometry, Int. J. Numer. Methods Engrg., 2, 375-395 (2003), July · Zbl 1032.74675
[20] Sarraga Ramon, F., A variational method to model \(g^1\) surfaces over triangular meshes of arbitrary topology in \(R^3\), ACM Trans. Graphics, 19, 4, 279-301 (2000)
[21] Szabo, B. A.; Babuška, I., Finite Element Analysis (1991), Wiley: Wiley New York · Zbl 0792.73003
[22] Toponogov, V. A., Differential Geometry of Curves and Surfaces: a Concise Guide (2006), Birkhäuser: Birkhäuser Boston
[23] Xiangjiu, Che; Xuezhang, Linag; Qiang, Li, \(g^1\) continuity conditions of adjacent NURBS surfaces, Comput. Aided Geom. Des., 22, 285-298 (2005) · Zbl 1080.65012
[24] Xiquan, Shi; Tianjun, Wang; Peiru, Wu; Fengshan, Liu, Reconstruction of convergent \(g^1\) smooth \(B\)-spline surfaces, Comput. Aided Geom. Des., 21, 893-913 (2004) · Zbl 1069.65534
[25] Xue, D.; Demkowicz, L., Control of geometry induced error in hp finite element simulations, Int. J. Numer. Anal. Model., 1, 112-129 (2004)
[26] D. Xue, L. Demkowicz, C.H. Bajaj, Reconstruction of \(g^1 hp \); D. Xue, L. Demkowicz, C.H. Bajaj, Reconstruction of \(g^1 hp \)
[27] Yoon, M.; Lee, Y.; Lee, S.; Ivrissimtzis, I.; Seidel, H. P., Surface and normal ensembles for surface reconstruction, Computer-Aided Design, 39, 5, 408-420 (2007)
[28] Zhang, Y.; Bajaj, C., Adaptive and quality quadrilateral/hexahedral meshing from volumetric data, Comput. Methods Appl. Mech. Engrg. (CMAME), 195, 9-12, 942-960 (2006) · Zbl 1119.65013
[29] Y. Zhang, C. Bajaj, B.-S. Sohn, 3D finite element meshing from imaging data, Special issue of Computer Methods in Applied Mechanics and Engineering (CMAME) on Unstructured Mesh Generation, vol. 194, no. 48-49, 2005, pp. 5083-5106.; Y. Zhang, C. Bajaj, B.-S. Sohn, 3D finite element meshing from imaging data, Special issue of Computer Methods in Applied Mechanics and Engineering (CMAME) on Unstructured Mesh Generation, vol. 194, no. 48-49, 2005, pp. 5083-5106. · Zbl 1093.65019
[30] Y. Zhang, C. Bajaj, G. Xu, Surface smoothing and quality improvement of quadrilateral/hexahedral meshes with geometric flow, in: 14th International Meshing Roundtable, pp. 449-468, 2005.; Y. Zhang, C. Bajaj, G. Xu, Surface smoothing and quality improvement of quadrilateral/hexahedral meshes with geometric flow, in: 14th International Meshing Roundtable, pp. 449-468, 2005.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.